
Copyright

by

Jae Hoon Jeong

2013

The Dissertation Committee for Jae Hoon Jeong
certifies that this is the approved version of the following dissertation:

Efficient Verification/Testing of System-on-Chip

Through Fault Grading and Analog Behavioral

Modeling

Committee:

Earl E. Swartzlander, Jr., Supervisor

Anthony P. Ambler, Co-Supervisor

Mircea D. Driga

Nur A. Touba

Lizy K. John

Efficient Verification/Testing of System-on-Chip

Through Fault Grading and Analog Behavioral

Modeling

by

Jae Hoon Jeong, B.S.; M.S.; M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2013

Efficient Verification/Testing of System-on-Chip

Through Fault Grading and Analog Behavioral

Modeling

Publication No.

Jae Hoon Jeong, Ph.D.

The University of Texas at Austin, 2013

Supervisor: Earl E. Swartzlander, Jr.

This dissertation presents several cost-effective production test solu-

tions using fault grading and mixed-signal design verification cases enabled

by analog behavioral modeling. Although the latest System-on-Chip (SOC)

is getting denser, faster, and more complex, the manufacturing technology is

dominated by subtle defects that are introduced by small-scale technology.

Thus, SOC requires more mature testing strategies. By performing various

types of testing, better quality SoC can be manufactured, but test resources

are too limited to accommodate all those tests. To create the most efficient

production test flow, any redundant or ineffective tests need to be removed or

minimized.

Chapter 3 proposes new method of test data volume reduction by com-

bining the nonlinear property of feedback shift register (FSR) and dictionary

iv

coding. Instead of using the nonlinear FSR for actual hardware implementa-

tion, the expanded test set by nonlinear expansion is used as the one-column

test sets and provides big reduction ratio for the test data volume. The exper-

imental results show the combined method reduced the total test data volume

and increased the fault coverage. Due to the increased number of test patterns,

total test time is increased.

Chapter 4 addresses a whole process of functional fault grading. Fault

grading has always been a ”desire-to-have” flow because it can bring up sig-

nificant value for cost saving and yield analysis. However, it is very hard

to perform the fault grading on the complex large scale SOC. A commercial

tool called Z01X is used as a fault grading platform, and whole fault grading

process is coordinated and each detailed execution is performed. Simulation-

based functional fault grading identifies the quality of the given functional

tests against the static faults and transition delay faults. With the structural

tests and functional tests, functional fault grading can indicate the way to

achieve the same test coverage by spending minimal test time. Compared to

the consumed time and resource for fault grading, the contribution to the test

time saving might not be acceptable as very promising, but the fault grading

data can be reused for yield analysis and test flow optimization. For the final

production testing, confident decisions on the functional test selection can be

made based on the fault grading results.

Chapter 5 addresses the challenges of Package-on-Package (POP) test-

ing. Because POP devices have pins on both the top and the bottom of the

v

package, the increased test pins require more test channels to detect packag-

ing defects. Boundary scan chain testing is used to detect those continuity

defects by relying on leakage current from the power supply. This proposed

test scheme does not require direct test channels on the top pins. Based on

the counting algorithm, minimal numbers of test cycles are generated, and the

test achieved full test coverage for any combinations of pin-to-pin shortage

defects on the top pins of the POP package. The experimental results show

about 10 times increased leakage current from the shorted defect. Also, it

can be expanded to multi-site testing with less test channels for high-volume

production.

Fault grading is applied within different structural test categories in

Chapter 6. Stuck-at faults can be considered as TDFs having infinite delay.

Hence, the TDF Automatic Test Pattern Generation (ATPG) tests can detect

both TDFs and stuck-at faults. By removing the stuck-at faults being detected

by the given TDF ATPG tests, the tests that target stuck-at faults can be

reduced, and the reduced stuck-at fault set results in fewer stuck-at ATPG

patterns. The structural test time is reduced while keeping the same test

coverage. This TDF grading is performed with the same ATPG tool used to

generate the stuck-at and TDF ATPG tests.

To expedite the mixed-signal design verification of complex SoC, analog

behavioral modeling methods and strategies are addressed in Chapter 7 and

case studies for detailed verification with actual mixed-signal design are ad-

dressed in Chapter 8. Analog modeling effort can enhance verification quality

vi

for a mixed-signal design with less turnaround time, and it enables compatible

integration of the mixed-signal design cores into the SoC. The modeling pro-

cess may reveal any potential design errors or incorrect testbench setup, and

it results in minimizing unnecessary debugging time for quality devices.

Two mixed-signal design cases were verified by me using the analog

models. A fully hierarchical digital-to-analog converter (DAC) model is im-

plemented and silicon mismatches caused by process variation are modeled

and inserted into the DAC model, and the calibration algorithm for the DAC

is successfully verified by model-based simulation at the full DAC-level. When

the mismatch amount is increased and exceeded the calibration capability of

the DAC, the simulation results show the increased calibration error with some

outliers. This verification method can identify the saturation range of the DAC

and predict the yield of the devices from process variation.

A phase-locked loop (PLL) design cases were also verified by me using

the analog model. Both open-loop PLL model and closed-loop PLL model

cases are presented. Quick bring-up of open-loop PLL model provides low

simulation overhead for widely-used PLLs in the SOC and enables early start-

ing of design verification for the upper-level design using the PLL generated

clocks. Accurate closed-loop PLL model is implemented for DCO-based PLL

design, and the mixed-simulation with analog models and schematic designs

enables flexible analog verification. Only focused analog design block is set to

the schematic design and the rest of the analog design is replaced by the analog

model. Then, this scaled-down SPICE simulation is performed about 10 times

vii

to 100 times faster than full-scale SPICE simulation. The analog model of

the focused block is compared with the scaled-down SPICE simulation result

and the quality of the model is iteratively enhanced. Hence, the analog model

enables both compatible integration and flexible analog design verification.

This dissertation contributes to reduce test time and to enhance test

quality, and helps to set up efficient production testing flows. Depending on

the size and performance of CUT, proper testing schemes can maximize the

efficiency of production testing. The topics covered in this dissertation can

be used in optimizing the test flow and selecting the final production tests to

achieve maximum test capability. In addition, the strategies and benefits of

analog behavioral modeling techniques that I implemented are presented, and

actual verification cases shows the effectiveness of analog modeling for better

quality SoC products.

viii

Table of Contents

Abstract iv

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Summary of Chapters in this Dissertation 4

Chapter 2. Background 9

Chapter 3. Reduction of Test Data Volume through Nonlinear
Feedback Shift Register by Dictionary Coding 13

3.1 Nonlinear Feedback Shift Register 14

3.2 Proposed Use of Nonlinear Properties of Feedback Shift Register 19

3.3 Test Architecture with Dictionary Coding 22

3.4 Experimental Results . 25

Chapter 4. Effective Functional Test Selection
by Functional Fault Grading 29

4.1 Functional Tests vs. Structural Tests 29

4.2 Functional Fault Grading . 31

4.3 Comparable Works . 33

4.4 Functional Fault Grading Setup 34

4.4.1 The Fault Grading Tool 34

4.4.2 Targeting Fault Categories 35

4.4.3 Simulation Inputs . 35

4.5 Fault Grading Methodologies 37

4.5.1 Fault Simulation . 37

ix

4.5.2 Transition Fault Grading 38

4.5.3 Stuck-at Fault Grading 40

4.6 Experimental Results . 41

4.7 Conclusion . 44

Chapter 5. Contactless Leakage Test for Manufacturing Defects
on Package-on-Package Devices 46

5.1 The Package-on-package Approach 47

5.2 Challenges of POP Testing . 48

5.3 Boundary Scan-Based Test . 49

5.3.1 Test Configuration . 49

5.3.2 Contactless Vector Generation 51

5.4 Extension to Multi-site Testing 52

5.5 Experimental Results and Conclusion 55

Chapter 6. Structural Test Time Reduction by
Transition Delay Fault Grading 56

6.1 TDF grading strategy . 57

6.2 TDF Grading Flow . 58

6.3 Experimental Results . 59

6.3.1 Core1 - TOP . 60

6.3.2 Core2 - SUBSYSTEM 61

6.3.3 Core3 - GRAPHICS 2D 63

6.3.4 Core4 - GRAPHICS 3D 64

6.3.5 Core5 - MODEM . 65

6.3.6 Core6 - ARM . 67

6.3.7 Core7 - CPU . 67

6.3.8 Core8 - VIDEO . 68

6.4 Conclusion . 69

x

Chapter 7. Analog Behavioral Modeling:
Strategies and Methodologies 71

7.1 Behavioral Modeling Strategies 72

7.1.1 Top-Down Modeling . 74

7.1.2 Bottom-up Modeling . 75

7.2 Industrial Trends . 76

7.3 Analog Traffic Modeling . 77

7.3.1 Analog Wire Interface 80

7.3.2 Virtual Verilog Wire . 82

7.4 Modeling Flow . 82

7.5 Model Verification . 85

Chapter 8. Mixed-Signal Design Verification by
Analog Behavioral Model 87

8.1 Calibration Verification for Digital-to-Analog Converter 88

8.1.1 Silicon Mismatch Modeling 90

8.1.2 Simulation Results . 92

8.2 Clock Generation Verification for Phase-Locked Loop 98

8.2.1 Open-loop PLL model 99

8.2.2 Closed-loop PLL model 102

Chapter 9. Conclusion 105

Bibliography 110

xi

List of Tables

3.1 Original test data of benchmark circuits 26

3.2 Improved test data by nonlinear property of feedback shift register 26

3.3 Additional improved test data by dictionary coding 27

4.1 Functional test breakdown . 41

4.2 Fault coverage status . 42

5.1 Leakage current by artificial shorts 55

6.1 Test time reduction . 70

xii

List of Figures

1.1 Parameters for Test Efficiency 4

3.1 Creation of Expanded Test Set [1] 15

3.2 Feedback Functions of Each Test Pattern and its Karnaugh Map 18

3.3 NFSR to generate an expanded test set 18

3.4 One-column test set by the proposed scheme of nonlinearity . 21

3.5 Proposed test architecture to implement the proposed scheme 24

4.1 Simulation inputs for fault grading 36

4.2 Transition delay fault grading 39

4.3 Stuck-at fault grading . 40

4.4 Stuck-at Coverage Enhancement 43

5.1 Package-on-Package . 47

5.2 Contactless Leakage Test Configuration 52

5.3 Contactless vector flow . 53

5.4 Contactless leakage test for multi-site testing 54

6.1 TDF grading flow . 58

6.2 TOP: individual coverage per frequency domain 60

6.3 TOP: cumulative coverage per frequency domain 60

6.4 SUBSYSTEM: individual coverage per frequency domain . . . 62

6.5 SUBSYSTEM: cumulative coverage per frequency domain . . 62

6.6 SUBSYSTEM: coverage comparison 63

6.7 GRAPHICS 2D: coverage comparison 64

6.8 GRAPHICS 3D: coverage comparison 65

6.9 MODEM: individual coverage per frequency domain 66

6.10 MODEM: cumulative coverage per frequency domain 66

6.11 ARM: coverage comparison 67

xiii

6.12 CPU: coverage comparison . 68

6.13 VIDEO: coverage comparison 69

7.1 Simulation time comparison 73

7.2 Modeling strategy . 74

7.3 Modeling accuracy versus performance gain compared to transistor-
level simulation for various modeling styles [2] 78

7.4 Simulators in verification chain 79

7.5 Real signal traffic model . 81

7.6 Behavioral modeling flow . 84

8.1 DAC block diagram . 89

8.2 Modeling of mismatches in current source 92

8.3 Offset errors from calibration 93

8.4 Calibration results . 95

8.5 Calibration results with excessive mismatches 96

8.6 Converted DAC output from digitized sine wave 97

8.7 PLL block diagram . 99

8.8 Open-loop PLL model . 100

8.9 Frequency sweep with PLL model 101

8.10 DCO-based PLL : open-loop PLL model 103

8.11 PLL waveform from analog blocks 103

xiv

Chapter 1

Introduction

Recently, Very Large Scale Integrated (VLSI) or System-on-chip (SOC)

circuits are getting denser, faster, and more complex. The manufacturing tech-

nology is getting smaller to meet the requirements. However, the manufactur-

ing processes are still far from perfect and are dominated by subtle defects.

The processes could introduce many kinds of manufacturing defects caused by

process variation, spot defects, and so on. It is very costly to rely on the cus-

tomer to identify if the shipped parts are functioning properly or not. Hence,

it is crucial to test the parts before shipping them [3, 4].

VLSI circuits are tested by applying test patterns to the Circuit Under

Test (CUT) and by comparing the response of the circuit with the good circuit

response, which can be obtained by simulation.

There are two different test categories: functional tests and structural

tests. Functional tests attempt to validate the CUT functions according to its

functional specification. This is closely related to the functional verification

problem of determining if the circuit specified by the netlist meets the func-

tional specifications, assuming it is built correctly. Functional tests are very

expensive and require detailed knowledge of the circuit behavior.

1

Structural tests make no direct attempt to determine if the overall

functionality of the circuit is correct. Instead, they try to make sure that the

circuit has been assembled correctly from low-level building blocks as specified

in a structural netlist. For example, are all of the specified logic gates present,

operating correctly, and connected correctly? The assumption is that if the

netlist is correct, and structural testing has confirmed the correct assembly of

the circuit elements, then the circuit should be functioning correctly.

One benefit of the structural testing paradigm is that test generation

can focus on testing a limited number of relatively simple circuit elements

rather than having to deal with an exponentially exploding multiplicity of

functional states and state transitions. Although the task of testing a sin-

gle logic gate at a time sounds simple, there is an obstacle to overcome. For

highly complex designs, most gates are deeply embedded, whereas the test

equipment is only connected to the primary input/outputs and/or some lim-

ited number of physical test points. The embedded gates, hence, must be

manipulated through intervening layers of logic. If the intervening logic con-

tains state elements, then the issue of an exponentially exploding state space

and state transition sequencing creates an unsolvable problem for test gen-

eration. To simplify test generation, Design For Test (DFT) addresses the

accessibility problem by removing the need for complicated state transition

sequences when trying to control and/or observe what is happening at some

internal circuit element. Depending on the DFT choices made during circuit

design/implementation, the generation of structural tests for complex logic

2

circuits can be more or less automated.

The final production testing needs to achieve a high level of test cov-

erage. With structural tests, it is not feasible to achieve 100% coverage for

complex designs. The test coverage can be increased as much as possible by

running the test generation tool for a long time, but this will increase the total

test time, and it may seriously affect the test budget. Also, after passing the

saturation point between pattern counts and test coverage, the efficiency of

the last few patterns could be very low.

In the production testing flow, critical states or functions of the CUT

need to be tested by some specific functional tests, such as memory Built-in

Self Test (BIST), maximum frequency tests, and so on. These tests are the

critical ones that cannot be skipped in the final production testing. There is

always some coverage overlap between the functional tests and the structural

tests.

To increase the testability of the CUT, there are some testing costs

and parameters to be considered, such as amount of test data, test application

time, area overhead, testing power, design effort, and fault coverage. For cost

efficiency, those testing costs need to be reduced, but it is not possible to satisfy

all these cost parameters at the same time. So there must be some trade-offs

among them. Figure 1.1 shows one example of test cost parameters for a

testing scheme. The bigger the gray region becomes, the better its efficiency.

Hence, one key objective of DFT methods is to allow designers to make

3

Higher

Fault Coverage

Less

Test Time

Less

Test Data

Lower

Test Power

Smaller

Area Overhead

Figure 1.1: Parameters for Test Efficiency

trade-offs between the amount and the type of DFT and the cost/benefit (time,

effort, and quality) of the test generation task. To optimize the efficiency of

the production tests, the assessment of redundancy within test flow is very

important.

1.1 Summary of Chapters in this Dissertation

This dissertation addresses the following cost-effective strategies for

production testing.

• Reduction of test data volume through nonlinear feedback shift

4

register by dictionary coding

A test set expansion scheme by nonlinear feedback shift register (NFSR)

is applied to reduce test data volume. All bits of the only first test

pattern and the leftmost bit of all subsequent patterns from the expanded

test set into the test memory. In addition, when the patterns are used

for testing, the fully expanded test set is regenerated by the relationship

between the patterns. This scheme uses the property of NFSR and

eliminates the hardware of the NFSR. Also, the scheme needs only a

small amount of memory to store the portion of the expanded test set.

Furthermore, a compression scheme can be used for further reduction.

A dictionary coding is applied, and this combined scheme provides big

compression rate. Chapter 3 describes the detail of test data reduction

by the property of NFSR and dictionary coding and experimental results.

• Efficient Functional Test Selection by Functional Fault Grading

Functional testing can be very expensive and time consuming depending

on the functional specification. By reducing the redundancy in test cov-

erage between structural tests and functional tests, efficient functional

tests can be selected to achieve high test coverage while reducing the to-

tal test time. To assess the redundancy, functional fault grading was used

with a commercial tool. Chapter 4 provides the detail of the functional

fault grading process and experimental results.

• Contactless Leakage Test on Package-on-Package Devices

5

Package-on-Package (POP) devices have Ball Grid Array (BGA) pins

on both the top and the bottom of the package. The increased number

of pins makes the POP testing challenging because more automatic test

equipment (ATE) channels are required. The proposed testing method

uses internal boundary scan cells and leakage tests to detect potential

packaging defects on the top pins without having physical ATE channels.

A special algorithm reduces the total test time to achieve full coverage.

Also, this method can be expanded into both top and bottom pins for

multi-site testing. Chapter 5 describes how the boundary scan cells work

for leakage tests to screen POP package defects.

• Reduction of Structural Test Time Through Transition Delay

Fault Grading

Chapter 6 addresses fault grading within structural tests, whereas Chap-

ter 4 covers fault grading to reduce the overlap between structural tests

and functional tests. Two common types of faults detected by structural

tests are stuck-at faults and Transition Delay Faults (TDFs). Stuck-at

faults can be considered as TDFs with infinite delay. Hence, TDF test

patterns can detect both TDFs and stuck-at faults. Using the TDF vec-

tors first can reduce the total number of static undetected faults, and

the reduced set of the static faults results in reduced pattern counts for

the static Automatic Test Pattern Generation (ATPG) tests. This TDF

grading process was performed within the ATPG tool that generated the

static ATPG vectors and the TDF vectors. Experimental results show

6

that the test time can be reduced while keeping the same test coverage.

• Analog Behavioral Modeling: Strategies and Methodologies

The analog behavioral model for mixed-signal analog cores can address

the simulation speed limitation in analog simulations and the interoper-

ability of mixed verification with analog and digital cores. In addition,

the validity of the model-based simulation is contingent on the quality

of behavioral models used. Depending on the level of abstraction for

the behavioral modeling, there are some limitations for accurate per-

formance analysis. Performance analysis can be covered by block-level

analog simulations. In analog behavioral modeling, electrical signals such

as voltage and current need to be represented as real numbers to achieve

enough level of accuracy and corresponding functionality for real analog

signal propagation. The interface in the analog model passes those real

numbers between blocks and mimic actual signal transfer and propaga-

tion. Chapter 7 describes the strategies and methodologies of analog

behavioral modeling.

• Mixed-Signal Design Verification by Analog Behavioral Model

Design verification is a necessary process to ensure a quality design. Usu-

ally, digital design is accompanied with well-defined verification plan and

thoroughly verified from multiple design stages. However, the verifica-

tion of Mixed-signal design requires long-taking transistor-level simula-

tions or repetitive Monte Carlo simulations. Within a given short time

7

for product market, it is not feasible to cover all verification aspects

by those analog simulations. Whereas those analog simulation methods

can cover performance-related verifications with long turnaround time,

analog behavioral model can achieve fast simulations for functional verifi-

cations. By virtue of fast simulation time with analog behavioral model,

such functional verification may uncover potential design bugs by ap-

plying comprehensive test cases with quick turnaround time. Chapter 8

provided the detail of mixed-signal design verification enabled by analog

behavioral modeling.

8

Chapter 2

Background

The manufacturing test costs of System-on-Chip (SOC) threaten to

increase beyond what is acceptable, if proper countermeasures are not con-

sidered. Factors that drive the production test costs up are the increases in

pin count, test data volume, operation speed of SOC, and the corresponding

required automatic test equipment (ATE) accuracy. In particular, the test

data volume has increased dramatically because of a combination of growth

in transistor count and more advanced test methods such as delay fault test-

ing, which requires significant test resources. As a consequence, the testing of

complex industry designs requires expensive ATE with a large channel count

and deep test vector memory and significant test time.

There are many different approaches to reduce the test costs. By im-

plementing a built-in self test (BIST), the SOCs themselves may eliminate

the need for ATE. A BIST for embedded memories is an inevitable choice for

mature production testing. However, a logic BIST is expensive to implement

inside the chip, and hence its usage is typically limited to small scale designs or

portions of a large design. Because all the required tests cannot be achieved by

the memory BIST and the logic BIST, ATE is still required for the production

9

testing.

Then, each test itself can be optimized by using test data compression

or compaction, but these techniques still require the presence of an ATE. The

demands on both vector memory and test application time can be reduced by

exploiting the many ”don’t care” bits in the test set [5, 6].

Another effective approach to reduce test cost is multi-site testing, in

which multiple instances of the same SOC are tested in parallel on a single

ATE. More sites mean more devices are tested in parallel. Multi-site testing

amortizes the fixed ATE costs over multiple SOCs. High volume production

testing always requires multi-site testing because the saving in test cost is

maximized.

Efficient multi-site testing requires the effective management of test

resources such as the number and depth of ATE channels and the on-chip DFT,

while taking into account parameters such as test time, test vector memory,

contact yield, etc. One way to allow an increase in the number of sites is to

increase the number of ATE channels. However, this solution not only brings

substantial extra costs, but also is not scalable to SOCs with high pin counts.

The other way to increase the number of sites is to narrow down the test

interface, i.e., the number of SOC terminals that need to be contacted during

testing. Limited pin count testing [7, 8, 9] is a well-known DFT technique that

does this.

Instead of reducing the direct test cost from each test, the quality of

10

each test can be calculated, and the test coverage overlap between different

test categories can be assessed by performing fault grading. Fault grading

is a procedure that rates testability by relating the number of fabrication

defects that can be detected with the test vector set under consideration to

the total number of conceivable faults [10]. It is used for refining both the

test circuitry and the test patterns iteratively, until satisfactory fault coverage

is obtained. Fault grading can be performed through fault simulation. Fault

grading estimates the quality of each given test by the number of detected

faults. Based on the fault grading result, the priority of the given tests can be

assessed.

The most important point in the production testing is that there should

be no test hole or test escape by deploying false-pass tests or by skipping

critical tests with no reason. As stated previously, many different types of test

optimization can be done, but the test quality should be maintained always.

Analog behavioral modeling refers to the substitution of more abstract,

less computationally intensive circuit models for lower level descriptions of

analog functions [11, 12, 13]. These simpler models emulate the transfer char-

acteristics of the circuit elements. Verification simulations can be performed to

verify the analog circuits. Analog SPICE simulators are much slower than digi-

tal simulators and are slower still when compared with emulators and hardware

accelerators. To tackle simulation-throughput issues, the digital simulation can

be performed by analog behavioral models. Various aspects of verification of

mixed-signal cores can be partitioned into different simulation platforms. Per-

11

formance oriented verification can be performed by analog SPICE simulations

although total simulation time is much longer than digital simulations. How-

ever, digital simulations using analog behavioral models can be performed to

check the full functionality of the whole core and detailed operational features

with quick turnaround time. After the detailed functionalities are verified

first, and then the fine-tuning for analog parameters can be verified via analog

simulations. These combined efforts will enhance the quality of the device and

increase the efficiency of all development process and engineering time.

12

Chapter 3

Reduction of Test Data Volume through

Nonlinear Feedback Shift Register by

Dictionary Coding

Since System-on-Chip (SOC) devices are getting bigger and more com-

plex, larger test data are required to make sure the quality of the SOC devices.

This increased test data volume requires more test memory and channels, and

affects testing time. This chapter describes how large test data can be han-

dled efficiently by combining nonlinear feedback shift register (NFSR) and

dictionary coding. 1

Daehn et al. [1] proposed an expanded test set generated from a de-

terministic test set. This scheme used NFSR to generate the expanded test

set for the combinational circuit under test(CUT). Hamzaoglu et al. [5] de-

veloped new compaction algorithms such as redundant vector elimination, es-

sential fault reduction to reduce a given fault set. Jas et al. [6] introduced a

statistical compression and decompression coding scheme considering testing

clock, size of codeword, and multiple cores. Li et al. [15] proposed a dictionary

coding in order to reduce test data volume. The proposed dictionary coding

1This chapter is based on [14].

13

in this chapter is developed mostly based on [6, 15]. Sun et al. [16] proposed a

test strategy that combines a dictionary coding and a reseeding technique to

reduce test data volume . Chandra et al. [17] used an alternating run-length

code to compress test data volume. This method was proven to decrease test

data volume, test application time, and power dissipation. Krishna et al. [18]

introduced the partial dynamic linear feedback shift register reseeding method

to reduce the test set size and to generate test vectors in fewer cycles. Alya-

mani et al. [19] proposed the seed ordering algorithm to decrease the required

number of the seeds.

A proposed method in this chapter uses a test set expansion scheme

by NFSR as described in [1]. However, the proposed scheme stores all bits

of the only first test pattern and the leftmost bit of all subsequent patterns

from the expanded test set into the test memory [14]. In addition, when the

patterns are used for testing, the fully expanded test set is regenerated by the

relationship between the patterns. This scheme uses the property of NFSR

and eliminates the hardware of the NFSR. Also, the scheme needs only a small

amount of memory to store the portion of the expanded test set. Furthermore,

a compression scheme can be used for further reduction. A dictionary coding

is applied and this combined scheme provides big compression rate [14].

3.1 Nonlinear Feedback Shift Register

This section describes how an expanded test set is generated from a

deterministic test set, and the limitations of the algorithm proposed by Daehn

14

et al. [1]. The expanded test set generated from a deterministic test set has

larger volume than the deterministic test set. Because an expanded set can be

generated by the NFSR, the benefit of NFSR is to save the test data volume in

[1]. However, the NFSR hardware itself is an area overhead to the chip. The

proposed scheme does not require the NFSR hardware, and it stores much less

amount of test data from the expanded test set.

Figure 3.1: Creation of Expanded Test Set [1]

As in Figure 3.1, the six deterministic test patterns are expanded into

a test set of 10 test patterns with four newly inserted test patterns. In Figure

3.1(b), the newly inserted test patterns are called ”link test patterns.” The

required number of link test patterns is determined by the successor or prede-

cessor that comes. The Kth successor and the Kth predecessor need the K-1

link test pattern(s). The first test pattern, 0110 in Figure3.1, is randomly

picked from the original test set and transferred into the expanded test set.

15

Successors indicate the test patterns placed after the first test pattern. On

the other hand, Predecessors are placed before the first test pattern in the

expanded test set. In order for any test pattern in the original deterministic

test set to be transferred into the expanded test set, the following conditions

should be met.

• Kth successor: A test pattern in the deterministic test set whose last

consecutive (S - K) bit(s) are equal to the first consecutive (S - K)

bit(s) of the last test pattern in the expanded test set. (S = size of test

pattern)

• Kth predecessor: A test pattern in the deterministic test set whose first

consecutive (S - K) bit(s) are equal to the last consecutive (S - K) bit(s)

of the first test pattern in the expanded test set.

When any test pattern in the deterministic test set meets the above-

mentioned conditions, the test pattern can be transferred to the expanded

test set. For example, the last two bits of the second successor, 0100 in Figure

3.1b, are equal to the first two bits of the last test pattern, 0011 in Figure

3.1b. In addition, a link test pattern 1001 is to be filled between them to

make a consistency among these three test patterns in the expanded test set.

This example is marked with two slant dashed line in Figure 3.1b. Link test

patterns, successors, and predecessors are used to make the consistency that a

test pattern in the expanded test set can be obtained by shifting its preceding

test pattern to the right by one bit and by inserting its leftmost bit into the

16

empty leftmost bit of its preceding test pattern. For example, the second test

pattern 1001 in Figure 3.1b is obtained by shifting the first test pattern 0011

to the right by 1 bit and by inserting 1 to the leftmost empty bit in the second

test pattern. Note that successors come without a fixed order of appearance,

and any Kth successor may appear multiple times in the expanded test set.

The operations for Predecessors are the same except the direction of shifting.

The detailed process for creation of the expanded test set is presented in the

next section.

To generate this expanded test set, the required hardware can be im-

plemented by NFSR. First, the feedback function of each test pattern in the

expanded test set can be determined by the leftmost bit to be filled in the

next test pattern, and then the Boolean feedback function can be extracted

by the Karnaugh map to satisfy all feedback functions. This Boolean feedback

function is used to figure out what kind of primitive gates are needed in the

feedback loop of NFSR.

In Figure 3.2a, the feedback function for each test pattern has the

leftmost bit of the next test pattern as its resultant value. If there is no next

test pattern, the result of the feedback function is a ”don’t care” state. Based

on these feedback functions, the Karnaugh map can be built, as shown in 3.2b.

With this Karnaugh map, the corresponding Boolean feedback function is

evaluated, and then the NFSR hardware for test pattern generator is created,

as shown in Figure 3.3. This test pattern generator is nonlinear because a

primitive gate like an AND gate is used in its feedback loop, whereas the

17

Figure 3.2: Feedback Functions of Each Test Pattern and its Karnaugh Map

linear feedback shift register uses only XOR gates in feedback loops.

Figure 3.3: NFSR to generate an expanded test set

The generation of the expanded test set and the logic implementation

for the NFSR look simple, as described previously. However, the actual imple-

mentation of NFSR has some limitations. If the given design is very large, the

process identifying the feedback function for NFSR is very complex. Further-

more, although the feedback function is known, the hardware implementation

requires a large area overhead because many primitive gates are usually re-

18

quired in the feedback loop. Hence, the above-mentioned scheme of NFSR

is limited to small or simple circuits [1]. Therefore, a new efficient scheme is

required to overcome these limitations. A proposed scheme is described in the

next section.

3.2 Proposed Use of Nonlinear Properties of Feedback
Shift Register

By minimizing the number of link test patterns, the size of expanded

test set can be reduced. In addition, this would result in the reduction of test

data volume. The following steps are the details of the proposed scheme.

• Step 1: Pick any test pattern from the deterministic test set and then

transfer it into the expanded test set, which is originally empty.

• Step 2: Set index K to 1.

• Step 3: Find the Kth successor of the last pattern in the expanded test

set from the deterministic test set. If this is found, transfer the successor

into the expanded test set. This Kth successor becomes the new last test

pattern in the expanded test set and the K-1 link test patterns would be

placed between the previous last pattern and the new last test pattern.

Keep searching another Kth successor for a new last test pattern. If there

is no matching successor, move to Step 4.

• Step 4: Find the Kth predecessor of the first pattern in the expanded

test set from the deterministic test set. If this is found, transfer the

19

predecessor into the expanded test set. This Kth predecessor becomes

the new first test pattern in the expanded test set and K-1 link test

patterns would be placed between the previous first pattern and the new

first test pattern. Keep searching another Kth predecessor for a new first

test pattern. If there is no matching predecessor, move to Step 5.

• Step 5: Increment K by 1, if neither the Kth successors nor the Kth

predecessors are found from both Step 3 and Step 4, and then go back

to Step 3. If any Kth successor or predecessor is found in either Step 3

or 4, go back to Step 2. When K reaches the ”size of test pattern” or

the deterministic test set is empty, finish the process.

Note that the ”don’t care” bits in the deterministic test set are flexibly

used to minimize the required number of link test patterns in the expanded

test set. For instance, when the test pattern 10110 finds its first successor, if a

test pattern satisfying its condition is only 110X1 in the original deterministic

test set, the ”don’t care” bit can be interpreted as 1. This approach decreases

the number of newly created link test patterns. In some cases, some of the

”don’t care” bits may remain unaltered. If the original deterministic test set

in Figure 3.1a is stored in the memory, it requires a 24-bit storage, which is

obtained by multiplying the number of columns and the number of bits in one

test pattern. Because an expanded test set is bigger than its deterministic test

set, the expanded test set would require more memory than the deterministic

test set. However, all bits of the expanded test set do not need to be stored.

20

As Figure 3.4 shows, only the first test pattern and the bits in the leftmost

column of the expanded test set may be stored, and the whole expanded test

set can be reproduced by a shift register. This first test pattern and the bits

in the leftmost column of the expanded test set are called one-column test

set. The first test pattern is serially fed into the shift registers, and then the

following test pattern can be simply generated from the shift registers. This

process can be implemented with properly designed test architecture. This

pattern generation scheme can be used with either the external tester or the

internal testing memory.

Figure 3.4: One-column test set by the proposed scheme of nonlinearity

This one-column test set reduces the required pattern bits from 24 bits

to 13 bits, which is obtained by the following equation: Number of Test Pattern

+ (Size of Test Pattern - 1). This is a significant saving in the test set volume.

Other than this, there is more room for further reduction to the one-column

test set if the order of the bits in the one-column test set is kept. The next

21

section describes additional reduction in test set volume using a dictionary

coding.

3.3 Test Architecture with Dictionary Coding

For further reduction of test data volume in the one-column test set, a

dictionary coding is chosen because it provides a good compression ratio to the

test set having fewer ”don’t care” bits [16]. Most of the work in this section

is developed based on the scheme of Jas et al. [6] and Li et al. [15]. In a

dictionary coding, a 1-bit prefix precedes each word regardless of compression.

This prefix tells whether a word is compressed or not. The size of a codeword is

determined by how many original words can be saved in the dictionary decoder

memory. For example, if the decoder memory has space for only eight words

regardless of their size, a 3-bit binary code can represent eight memory storage

spaces. This 3-bit code is the index that comes after the prefix when a word is

compressed. In this case, the size of the smallest codeword is 4 bits (i.e., 1-bit

for the prefix and 3-bits for the index). When the decoder reads the prefix

indicating a compressed word, it has to decode the 3-bit index that selects one

of the eight memory spaces and then extracts the original word from memory.

When a word is not compressed, the size of the codeword is ”m+1” bits, where

m is the size of an original word. If the decoder reads the prefix indicating

an uncompressed word, then it reads the m bit uncompressed word after the

prefix. This m bit uncompressed word moves directly into the m bit serializer

without checking the memory. In a dictionary coding, a few critical parameters

22

such as the size of the original word and the appearance frequency of a word

should be carefully determined. Those values cannot be determined simply

because all the bits are deeply related each other. Therefore, it is an NP-hard

(Non-deterministic Polynomial-time hard) problem to find an optimal solution

to meet the requirements of all those parameters. Hence, a heuristic method

should be used.

As mentioned by Jas et al. [6] and Li et al. [15], the tester clock for

decoder and the system clock should be considered. The proposed scheme

considers the case that the tester clock is slower than the system clock.

Figure 3.5 describes the test architecture for the proposed scheme with

either external tester or internal test memories such as read only memory

(ROM). In this architecture, the decoder is mainly related to the dictionary

coding. Thus, if only the scheme of nonlinearity is applied, it requires only the

shift registers, the multiple input shift register (MISR), and the memory in the

external tester or inside the circuit under test (CUT). This scheme requires

the same clocking scheme from the external tester or the internally generated

clocks for the shift registers.

The compressed one-column test set is stored in the memory of the

external tester or internal test memory. Each codeword is fed into the dictio-

nary decoder serially, and the decoder reads the prefix first. When the prefix

is 1, indicating the word is compressed, the decoder reads the index after the

prefix, and then sends the word from the memory of the decoder to the m bit

serializer. The serializer takes the m bit word, and the m bit word is shifted

23

Figure 3.5: Proposed test architecture to implement the proposed scheme

into the shift registers. At every shift clock cycle, the test patterns in the

shift register are applied to the CUT, and its response is captured into MISR.

When the prefix is 0, the decoder simply takes an ”m+1” bit uncompressed

codeword from memory. Then, these m bit uncompressed codeword is fed into

the m bit serializer. The rest of the process is the same as in the compressed

word. As mentioned previously, the proposed scheme considers the case that

the test clock for the decoder is slower than the system clock. In this clock

system, the compressed word runs well because less operation time is required

in a slow decoder clock. However, the uncompressed word is a little different.

The system clock should stall until the decoder finishes its feed of the uncom-

pressed m bit word into the serializer because the decoder spends more time

with the uncompressed word [6].

24

3.4 Experimental Results

The most deterministic test sets for ISCAS ’85 are designed to have

fewer test patterns than the required amount to show the increase of fault

coverage by the scheme of nonlinearity. Conversely, the test sets for ISCAS

’89 are highly compacted and have almost the required number of test patterns

for the desired fault coverage. Table 3.1 shows the original test data of the

benchmark circuits. In the last column of Table 3.2, most of the fault coverage

of ISCAS ’85 is increased because of a greater number of test patterns in

the expanded test set, but the fault coverage of all ISCAS ’89 benchmark

circuits is not increased because all undetected faults by original test set might

be a random resistant fault. When implementing the dictionary coding, the

program code is developed to maximize the slant in the distribution of the

frequency of each word’s appearance because the sharp slant gives a better

compression. The word sizes from 5 to 10 bits are simulated to find the

best compression rate with eight memory spaces fixed in the decoder memory.

As the size of the original word increases, more memory space is required,

although the number of decoder memory spaces is fixed. Note that the effect

of increasing memory is not considered in computing the results. In some

case, increasing the word size does not improve the reduction. This case might

impact the memory requirement.

In Table 3.1, the fifth column shows the number of ”don’t care” bits in

the test set. These numbers for ISCAS ’85 are not high because the compres-

sion ratio for ISCAS ’85 came out as low. Table 3.2 shows the improved data

25

Table 3.1: Original test data of benchmark circuits

Benchmark # of PI* # of TP* Original # of don’t-care FC* (%)
circuit (PI+FF*) *TDV×Υ bits (%)

c432 36 85 3,060 1,683 (55) 81.00
c499 41 286 11,726 2,847 (24.3) 39.50
c1908 33 1,128 37,224 12,453 (33.5) 96.80
c2670 233 700 163,100 107,836 (66.1) 97.50
c7552 207 5 1,035 0 (0) 44.10
s9234 247 147 36,309 27,632 (76.0) 93.45
s13207 700 239 167,300 157,018 (93.8) 98.46
s15850 611 120 73,320 62,603 (85.4) 96.68
s38417 1,664 95 158,080 124,896 (79.0) 99.47
s38584 1,464 131 191,784 162,174 (84.6) 95.85

*: (PI: Primary Input, FF: Flip-Flop, TP: Test Pattern, TDV: Test Data Volume, FC: Fault Coverage)
Υ: is obtained by multiplying the number of PI and TP

Table 3.2: Improved test data by nonlinear property of feedback shift register

Benchmark New # New # of New TDV* Improvement New FC*
circuit of TP* don’t-care of the to Original (%)

bits Nonlinearity Ψ TDV* (%)
c432 1,472 526 1,507 50.75 95.00
c499 7,432 818 7,472 36.27 64.40
c1908 25,249 4,092 25,281 32.08 99.20
c2670 68,860 15,871 69,092 57.64 97.50
c7552 812 0 1,018 1.64 93.40
s9234 13,422 5,626 13,668 62.36 93.46
s13207 16,930 8,712 17,629 89.46 98.46
s15850 20,549 11,006 21,159 71.14 96.68
s38417 101,883 70,827 103,546 34.50 99.47
s38584 74,275 46,937 75,738 60.51 95.85

*: (PI: Primary Input, FF: Flip-Flop, TP: Test Pattern, TDV: Test Data Volume, FC: Fault Coverage)
Ψ: is obtained by adding the number of new TP and the number of (PI-1)

by applying only the scheme of nonlinearity. The second column indicates the

number of new test patterns in the expanded test set. These increased test pat-

terns guarantee an improvement in fault coverage when the faults detectable

by random test patterns remain undetected. The improvement in fault cov-

erage is shown in the last column of Table 3.2. Based on the expanded test

26

Table 3.3: Additional improved test data by dictionary coding

Benchmark TDV from TDV from TDV from Total
circuit Only Dictionary the Dictionary Nonlinearity+ Improvement

Coding in [12] Dictionary (%)
c432 1,938 (10) 2,072 (8) 1,170 (9) 61.76
c499 9,764 (7) 9,479 (10) 6,834 (9) 41.72
c1908 31,728 (6) 29,213 (10) 23,364 (8) 37.23
c2670 88,543 (10) 85,232 (10) 50,922 (9) 68.78
c7552 754 (9) 791 (10) 756 (7) 26.96
s9234 20,397 (10) 20,335 (10) 11,191 (8) 69.18
s13207 73,906 (10) 73,402 (10) 13,345 (10) 92.02
s15850 36,125 (10) 36,543 (10) 15,320 (9) 79.11
s38417 85,625 (10) 87,827 (10) 65,710 (10) 58.43
s38584 98,976 (10) 102,214 (10) 53,361 (10) 72.18

set, the size of the one-column test set is shown in the fourth column. The

improved percentage of the one-column test set in the fifth column ranges

from 32.08% to 89.46% except for the c7552. Because this c7552 benchmark

circuit uses only five test patterns with no ”don’t care” bit, the reduction ra-

tio is pretty low. However, the scheme of nonlinearity gives the significantly

increased fault coverage for c7552 with almost the same test volume used. As

mentioned previously, the reduced amount of test volume is directly propor-

tional to the number of ”don’t care” bits. For instance, c432 having 55% of

”don’t care” bits shows 50.75% reduction. Thus, more ”don’t care” bits in the

test set guarantee more enhancements in the reduction of test volume.

Table 3.3 shows the data for further reduction by applying dictionary

coding and the cases with only dictionary coding by Li et al. [15]. The second

column indicates the improved data when only dictionary coding is applied.

The numbers in parentheses indicate the size of the original word that grants

27

the best reduction ratio without considering the increased required memory.

In the simulation of only the dictionary coding, a ”don’t care” bit is simply

converted to the value 0, and then the frequency of each word’s appearance

is counted. The result from the sole application of the dictionary coding is

fairly good but much less than the improved result in the fourth column,

where both the scheme of nonlinearity and the dictionary coding are applied

together. The third column shows the improved result from the dictionary

coding used by Li et al. [15]. Its results are as close as those of the sole

application of the dictionary coding. One interesting point is that most of

the compared data are worse than that of sole application of the scheme of

nonlinearity. It means that the scheme of nonlinearity is good enough alone.

The combined application of the scheme of nonlinearity and of dictionary

coding provides the best compression ratio, which is listed in the fifth column of

Table 3.3. However, there is no significant effect to the scheme of nonlinearity

with the additional application of the dictionary coding because most of the

compression has already been extracted by using the scheme of nonlinearity.

As all results indicate, both the scheme of nonlinearity and the mix of

two schemes offer better performance compared with the sole application of

dictionary coding or the dictionary coding used by Li et al. [15]. Moreover,

the nonlinearity alone has a good capability to decrease the test set volume.

The proposed schemes obviously show a considerable reduction in the test data

volume.

28

Chapter 4

Effective Functional Test Selection

by Functional Fault Grading

The purpose of system-on-chip (SoC) production testing is to make sure

that all the manufactured devices are working correctly as a valid product. If

all combinations of physical defects in the chip are tested and screened, the

screened SoC devices are guaranteed not to have any manufacturing defects.

Very large-scale integrated (VLSI) circuits are tested by applying test

patterns to the circuit under test (CUT) and by comparing the response of the

circuit with the good circuit response, which can be obtained by simulation.

There are two categories of tests: functional tests and structural tests. Because

SoC devices are getting bigger and more complex, the production test flow

needs to make sure there is no test hole for the product. In the meantime, test

cost needs to be minimized with efficient test selections and Design For Test

(DFT) choices.

4.1 Functional Tests vs. Structural Tests

Functional tests attempt to validate the CUT functions according to

its functional specification. This is closely related to the functional verifica-

29

tion problem of determining if the circuit specified by the netlist meets the

functional specifications, assuming it is built correctly. Functional tests are

very expensive and require deep knowledge of the detailed circuit behavior.

Structural tests make no direct attempt to determine if the overall

functionality of the circuit is correct. Instead, they try to make sure that the

circuit has been assembled correctly from low-level building blocks as speci-

fied in a structural netlist. For example, are all specified logic gates present,

operating correctly, and connected correctly? The assumption is that if the

netlist is correct and structural testing has confirmed the correct assembly of

the circuit elements, then the circuit should be functioning correctly.

One benefit of the structural testing paradigm is that test generation

can focus on testing a limited number of relatively simple circuit elements

rather than having to deal with an exponentially exploding multiplicity of

functional states and state transitions. Although the task of testing a sin-

gle logic gate at a time seems simple, there is an obstacle to overcome. For

highly complex designs, most gates are deeply embedded whereas the Auto-

matic Test Equipment (ATE) is only connected to the primary input/outputs

and/or some limited number of physical test points. Hence, the embedded

gates must be manipulated through intervening layers of logic. If the interven-

ing logic contains state elements, then the issue of an exponentially exploding

state space and state transition sequencing creates an unsolvable problem for

test generation. To simplify test generation, the DFT process addresses the

accessibility problem by removing the need for complicated state transition

30

sequences when trying to control and/or observe what is happening at some

internal circuit element. Depending on the DFT choices made during circuit

design/implementation, the generation of structural tests for complex logic

circuits can be more or less automated.

The final production testing needs to achieve a high level of test cover-

age. With the structural tests, it is not feasible to achieve 100% test coverage

for complex designs. The test coverage can be increased as much as possible

by running the test generation tool for a long time, but this will increase the

total test time and it may seriously affect test budget. Also, after passing the

saturation point between pattern counts and test coverage, the efficiency of

the last few patterns could be very low.

In the production testing flow, critical states or functions of the CUT

need to be tested by some specific functional tests such as memory built-in self

test (BIST), maximum frequency tests, and so on. These tests are the critical

ones, which cannot be skipped in the final production testing. There is always

some coverage overlap between the functional tests and the structural tests.

4.2 Functional Fault Grading

Fault grading is a procedure that rates testability by relating the num-

ber of fabrication defects that can in fact be detected with a test vector set

under consideration to the total number of conceivable faults [10]. It is used

for refining both the test circuitry and the test patterns iteratively, until sat-

isfactory fault coverage is obtained.

31

The fault grading can be performed through fault simulation. The fault

grading estimates the quality of each given test by the number of detected

faults. Based on the fault grading result, the priority of the given tests can be

assessed.

The structural test generation is performed by an automatic test pat-

tern generation (ATPG) process, which is based on pseudo-random pattern

generation technique. Hence, there are some random-pattern-resistant faults

that prevent the perfect coverage of the ATPG process. The faults that are

undetected by the ATPG process should be targeted by different types of test

vectors. Functional tests are good complimentary methods, but these func-

tional tests are very expensive in terms of test cost. Hence, all of them cannot

be used in the production flow because of limited test budgets.

Some functional tests may contribute much coverage for the undetected

faults from the ATPG process, but others may target faults that are already

detected. Hence, the fault grading process screens out those redundant func-

tional tests to not waste test resources.

Functional fault grading has been considered as a very significant pro-

cess to assess the value of each functional test and to optimize a production

testing flow, but the required effort is too intense and time consuming. De-

veloping a new sophisticated fault grading tool is beyond the scope of this

work. However, the selection of a proper commercial tool fully capable for

fault grading and thoughtful arrangement of the required inputs and smart

empirical decision can speed up this whole fault grading process.

32

In this chapter, the purpose of fault grading is to find out the best suite

of functional tests based on their grade. Post-ATPG undetected faults will be

targeted by functional vectors.

4.3 Comparable Works

As noted earlier, this fault grading process was performed using software-

based fault simulation. Hence, the total fault grading time is dependent on the

size and complexity of the target SoC, but this fault grading can be performed

once, and the optimized test flow can be used for production.

There is one comparable work presenting hardware-based fault emula-

tion [20]. A Field-Programmable Gate Array (FPGA) was used to replicate

the target SoC. Because all the time-consuming parts are in software-based

fault grading, the overall processing time is very quick. Unfortunately, for a

big industrial design, multiple FPGAs need to be placed and connected in a

big emulation board. Also, the synthesized FPGA netlist is not equivalent to

the actual gate-level netlist of the SoC. Finally, delay values may vary over

different FPGAs through their boundaries. Hence, passing the functional test

on the emulation board may fail on silicon because of those mismatches. It is

not a desirable solution to decide the quality of production tests by using the

nonequivalent netlists.

33

4.4 Functional Fault Grading Setup

Functional fault grading tools need to handle very sophisticated com-

puting processes. Instead of developing the tool itself, a mature commercial

tool was used in this study.

4.4.1 The Fault Grading Tool

Fault grading is a very intense computing simulation process. Various

tools from multiple different vendors were investigated for this functional fault

grading effort. Most failing tools were not able to provide full compatibility

for the input functional tests and show an optimized simulation speed. After

reviewing several commercial tools in the market, Z01X by WinterLogic was

chosen, which represents four possible states in digital simulation. Z01X is

a postsynthesis Verilog simulator for evaluating the effectiveness of manufac-

turing tests in chip and IC production [21]. Z01X uses traditional stuck-at

fault models and transition fault models required for the detection of deep

submicron manufacturing defects characterized by slow-to-rise and slow-to-

fall transition delays in gates and wires. Z01X supports parallely distributed

simulation, which is performed using one master process and multiple slave

processes to reduce the total simulation time and to maximize the utilization

of computing resource. This tool is fully scalable. Hence, the more slaves, the

faster simulation can be achieved. Also, there is a companion tool called Fault

Manager, which efficiently manages all the given faults with simulation results

and quality factors.

34

4.4.2 Targeting Fault Categories

For the ATPG process, a commercial ATPG tool from Synopsys was

used. A tool called Tetramax marks each fault’s class to show its detection

status after the completion of ATPG. Each fault was categorized as ”detected,”

”possibly detected,” ”undetectable,” ”ATPG untestable,” or ”not detected”

[22].

As a target for functional fault grading, the setup picked up the faults

marked as ”possibly detected,” ”not detected,” and ”ATPG untestable”. The

”possibly detected” faults are the faults not deterministically detected by the

ATPG process. This fault category’s credit is 50%, whereas the ’detected’

faults have 100% credit for test coverage. Hence, by detecting them with

functional tests, test coverage could become better.

The ”undetectable” faults are the ones that cannot be detected (either

hard or possible) under any conditions. When calculating test coverage, these

faults are not considered because they have no logical effect on the circuit

behavior and cannot cause failures. Hence, these faults are not included in the

targeting faults. The ”not detected” or ”ATPG untestable” faults are good

candidates for functional fault grading.

4.4.3 Simulation Inputs

Because the functional fault grading process handles the structural fault

list, gate-level netlists are required. In addition, other simulation-specific in-

puts such as Read Only Memory (ROM) images or memory access interfaces

35

need to be prepared. These memory setups will affect the initial behavior of

the design. To accelerate the fault grading process, the user-defined primitive

(UDP) libraries are optimized to not require too much computation. By re-

moving redundant hierarchies and collapsing multiple instances into a single

UDP table, the total number of design units is reduced significantly. Also,

the Z01X tool reads in the functional vectors in the waveform generation lan-

guage (WGL) format, which is an industrial standard test format. Hence, all

the functional vectors dumped from simulation are translated by translation

engine into the WGL format. For transition delay fault (TDF) grading, the

clock frequency of each frequency domain is prepared as a value change dump

(VCD). Figure 4.1 shows the detail of the simulation inputs for the functional

fault grading.

Figure 4.1: Simulation inputs for fault grading

36

4.5 Fault Grading Methodologies

The Z01X tool supports simulation with stuck-at, transition delay, and

bridging faults. Bridging faults are not considered in this experiment because

they require huge computing resources and their coverage impact is very small

compared with the simulation effort. Because the nodes being detected as

TDFs also can be detected as stuck-at faults, transition fault grading is applied

first for the total fault list. Then, stuck-at fault grading is applied for the

remaining undetected faults.

4.5.1 Fault Simulation

Fault simulation verifies the completeness of the manufacturing test

sets for data and control paths within a chip [3, 4]. It works by inserting

hypothetical faults into the chip design and by running the manufacturing tests

against the faulty chip. The results are then compared against the unfaulted

design. If the tests are able to detect the faults, then there is a high probability

that the tests will detect manufacturing errors in that area of the chip.

Fault simulation, in some instances, can detect areas of untestability

because of design flaws. If functional tests do not cause observable behavior in

a portion of the chip during fault simulation, there may be a design problem

in that part of the chip. The best place to start a good testing strategy is

in the design itself, by organizing each chip design with testability in mind.

Good DFT methodologies in the chip translate directly to high confidence in

the manufacturing part.

37

Fault simulation requires target fault sets and driving tests. If the

driving tests are the ”must-keep” tests, the fault simulation is referred to as

fault screening because the faults that can be detected by the ”must-keep”

tests should not be used to judge the effectiveness of the functional tests. If

the driving tests are the ”secondary” tests, it is referred to as fault grading.

After each fault screening or fault grading, all the given faults are marked as

detected by which tests or not detected by any tests.

The fault simulation algorithm that Z01X uses is the ”concurrent fault

simulation,” which means that it is able to simulate the good machine with

large numbers of faulty machines concurrently. This is accomplished by track-

ing differences between the faulty machine and the good machine. The con-

current fault simulation algorithm assumes that any given fault effect has a

small, localized effect on the total machine. By running many faults concur-

rently, the time required to run all of the faults is significantly reduced. Many

other researches also used these concurrent fault simulation techniques and

attempted to enhance the overall performance [23, 24, 25].

4.5.2 Transition Fault Grading

The purpose of functional fault grading is to determine the functional

tests that do not add value and the value-adding functional tests. The tran-

sition fault grading process is shown in Figure 4.2. There are some functional

tests that are very critical. They have a unique role in functional verification

and testing. These functional tests are called must-keep tests. All functional

38

tests other than the must-keep tests are referred to as secondary tests.

Figure 4.2: Transition delay fault grading

In the transition fault grading flow, transition fault screening is per-

formed with the must-keep functional tests first because the faults that are

detected by the must-keep tests are not supposed to be used for judging the

quality of the secondary tests whether they add values for the overall test

coverage or not. Some of the transition faults are detected by the must-keep

tests, and the undetected transition faults are fed into transition fault grad-

ing. The secondary functional tests are applied to verify the undetected faults

from the transition fault screening. The transition fault grading is repeated

for each frequency domain. Also, each frequency domain has its own fault

list identified by static timing analysis. The functional tests detecting some

faults in transition fault grading are marked as ’transition-detecting’ tests and

39

they are used in stuck-at fault screening. After completing the transition fault

screening and transition fault grading, the tests that do not add value will be

included in the secondary tests for stuck-at fault grading.

4.5.3 Stuck-at Fault Grading

In the stuck-at fault screening, the must-keep tests and transition-

detecting tests are applied against the total stuck-at faults. For the remaining

undetected stuck-at faults from the stuck-at fault screening, the secondary

tests are applied for stuck-at fault grading. Figure 4.3 shows the stuck-at

fault grading flow.

Figure 4.3: Stuck-at fault grading

This fault grading process can identify which functional tests can con-

tribute and increase the test coverage and which functional tests do not add

40

any value on the test coverage.

4.6 Experimental Results

For the functional fault grading experiment, Qualcomm’s 65nm SoC

chip is used. The top-level stuck-at ATPG coverage of the device is 98.47%.

The total number of faults is 9.1 million, and approximately 140,000 faults

are targeted for fault grading with 287 functional tests. Also, 12 different

frequency domains are considered as transition fault grading.

Table 4.1: Functional test breakdown
Freq. Total Valid Passing Must-Keep Secondary Percentage

Domain Tests Tests (P) Tests (M) Tests (M/P)
F0 58 42 16 26 38.10%
F1 68 52 26 26 50.00%
F2 19 19 19 0 100.00%
F3 19 19 19 0 100.00%
F4 71 55 29 26 52.73%
F5 35 24 20 4 83.33%
F6 29 29 25 4 86.21%
F7 12 12 12 0 100.00%
F8 23 19 4 15 21.05%
F9 9 9 4 5 44.44%
F10 0 0 0 0 0.00%
F11 48 32 17 15 53.13%

Stuck-at 287 251 91 160 36.25%

Table 4.1 shows how many functional tests are valid for each frequency

domain. Each functional test was loaded into the Z01X tool and its functional-

ity was assessed first. Some tests were not fully functional and controllable in

the tool because of simulator compatibility or poor quality of the tests. Table

41

4.1 also shows the number of passing tests in each frequency domain. The per-

centage between must-keep tests and secondary tests is also described in Table

4.1. Two hundred and fifty-one functional tests are passing for stuck-at fault

grading, and approximately 36.25% of the tests are considered as must-keep

tests.

Table 4.2: Fault coverage status

Freq. ATPG Post FG* Value-adding No value Coverage
Domain Coverage Coverage STs* STs* Increase

F0 94.88% 95.97% 15 11 1.09%
F1 91.10% 91.84% 17 9 0.74%
F2 92.89% No Secondary Test 0 0 0.94%
F3 96.00% No Secondary Test 0 0 0.65%
F4 97.01% No Detect 0 26 0.00%
F5 94.16% 94.64% 1 3 0.48%
F6 96.51% 97.25% 2 2 0.74%
F7 95.51% No Secondary Test 0 0 0.50%
F8 94.24% 95.13% 4 11 0.89%
F9 91.90% No Detect 0 5 0.00%
F10 98.63% No Test 0 0 0.00%
F11 94.08% 94.16% 4 11 0.08%

Stuck-at 98.47% 98.70% 40 120 0.23%

*: FG = Fault Grading, ST = Secondary Test

Table 4.2 shows the fault grading result for each frequency domain.

The F4 and F9 frequency domains did not show any detection and showed 0%

coverage increase. The F10 domain did not have any valid functional tests at

all. The F2, F3, and F7 frequency domains did not have any secondary test

candidates for fault grading, but the coverage increase was contributed by the

valid must-keep tests for each domain. All other frequency domains have both

must-keep tests and secondary tests and showed some coverage increase. From

42

stuck-at fault grading, the enhancement of the test coverage by all detecting

tests is 0.23%, but this enhancement is achieved by only 40 functional tests

out of 160 secondary tests. Hence, even with all the 160 secondary tests on

top of the must-keep tests, the coverage enhancement is still 0.23%, but the

test time consumption is huge because of the 120 no-value-adding functional

tests.

The 0.23% stuck-at coverage added by those value-adding functional

tests might be considered as very minimal, but Figure 4.4 shows how much

enhancement for the defective parts per million (DPM) it can achieve. It shows

the cases for two different defect density (DD) processes.

Figure 4.4: Stuck-at Coverage Enhancement

43

4.7 Conclusion

The experimental results have shown that the overall impact of func-

tional tests on test coverage is not that significant, but the fault grading process

identified the number of no-value-adding functional tests. Functional test se-

lection can be decided based on a given test budget. Although some functional

tests are not adding any value for test coverage, it is not an easy decision to

skip them because there might be some test coverage hole made by the skipped

tests. This experimental result can present a guideline for the functional test

selection. In addition, this result can be used to assess the quality of the

functional tests.

One of the shortcomings of this fault grading process is the total sim-

ulation time. Depending on the size and complexity of clock domains, the

transition fault grading took a few days. The stuck-at fault grading took

approximately 20 days for the worst case. Of course, the process can be accel-

erated by allocating more computing resources. On the basis of the simulation

logs, after the first 10 days, most simulation processes were saturated and

moved very slowly. Proper empirical decisions can help the setup of the tool

and control the simulation time.

Although this fault grading process is still a huge task in terms of

engineering resources, it is valuable to achieve efficient production testing flow

especially for the latest large SoCs. This functional fault grading needs to be

performed only once for the device. By spending just multiple days’ effort

for this functional fault grading, the final production test flow can be more

44

optimized in terms of test cost, and the test time reduction achieved by this

functional fault grading can be accumulated over months and years for high-

volume production.

45

Chapter 5

Contactless Leakage Test for Manufacturing

Defects on Package-on-Package Devices

Recently, system-on-chip (SOC) devices require faster and more com-

plex functions, and they need to be implemented by smaller scale technol-

ogy. Because of the expanded application scopes, the latest SoC devices are

equipped with bigger and faster memory. One of the most advanced pack-

aging schemes is to stack a memory package on top of the SoC package [26].

This stacked interface provides higher density and fast signal propagation with

short connections and low signal interference.

This packaging scheme is very flexible to handle many different memory

requirements with an SoC package to target different vendors and various

products, but it poses many testing challenges. This package is connected by

a Ball Grid Array (BGA), and the increased number of pads requires the same

number of test channels to access the pads. Also, higher pad density could

introduce continuity failure on the pads.

To check for manufacturing defects on the pads, signal propagation

needs to be checked by test channels. For high-volume production testing, all

the pads on the package-on-package (POP) device may not have direct test

46

channels. Hence, the conventional continuity test cannot be performed for

the pads not having direct test channels. Because most SOC devices support

boundary scan cells for the pads compliant with IEEE 1149.1, a leakage-based

testing scheme is implemented by using the internal boundary scan chain.

This scheme can detect manufacturing defects on the pads with no direct test

channel by measuring the leakage current of the connected power supplies.

5.1 The Package-on-package Approach

The POP approach is an integrated circuit packaging technique to al-

low vertically combining discrete logic and memory BGA packages [26]. This

stacked interface allows higher density and fast signal propagation with short

connections and low signal interference. Typically, an SoC package is sitting

at the bottom, and a memory package is on the top as depicted in Figure 5.1.

Figure 5.1: Package-on-Package

Each package can be tested separately, and if one package is malfunc-

tioning, only that package must be replaced. Also, a family of products can be

47

quickly and easily implemented by changing the memory package only. The

end users such as mobile phone makers control the logistics. This means mem-

ories from different suppliers can be used for different targets without changing

the logic. The memory becomes a commodity to be sourced from the supplier

with the lowest cost. This trait is also a benefit compared with the package-

in-package (PIP), which requires a specific memory device to be designed in

and sourced upstream of the end users.

Electrically, POP devices offer several benefits by minimizing track

length between different interoperating parts, such as a controller and a mem-

ory. This yields better electrical performance of the devices, because the

shorter route of interconnections between circuits yields faster signal prop-

agation and reduces noise and cross-talk.

5.2 Challenges of POP Testing

POP devices have many testing challenges. Once the memory package

and the SoC package are assembled together as a stacked device, there is no

way to access the top balls of the SoC package or bottom balls of the memory

package. Typically, the memory die in the memory package is a known-good-

die (KGD), but during the packaging process, some manufacturing defects

could be added. The memory package itself can be tested by itself, but it is

very expensive to test the SoC package and the memory package separately.

Although the SoC package is tested by itself, the increased number of pads

for the top and bottom pins requires many test channels. Without having

48

direct test channels for the all pins, conventional continuity tests cannot be

performed.

5.3 Boundary Scan-Based Test

The boundary scan description language (BSDL) is a description lan-

guage for specifying the attributes of boundary scan cells in the SOC. It is

part of the IEEE Standard 1149.1, and the BSDL files are well supported by

various joint test action group (JTAG) tools for boundary scan applications.

The boundary scan-based tests can be generated by doing JTAG programming

or by some commercial tools that take the BSDL files. The tool named Tap

Checker developed by GOEPEL is used to generate the package verification

tests.

5.3.1 Test Configuration

To detect any manufacturing defects on the package pins, the continuity

of the pins should be verified through the connected test channels. If no test

channel is assigned to the package pins, the continuity of the package pins can

be verified through the bounday scan cells beyond the package pins. Opposite

values have to be applied and checked at least once to each combination of two

pins. The simplest solution for this test is to apply walking zero or walking

one test patterns. This test is called an asymmetric test. For N pins on a

package, the N walking zero patterns or N walking one patterns have to be

applied, but the test time of this asymmetric test with 2N patterns is huge

49

if N is very big. Usually, big industrial designs have at least a few hundred

pins. In this case, the asymmetric tests are not feasible for production test

solutions. To minimize the burden of test time, interconnect tests are required.

Because most pads in the SoC support bi-directional signal propagation, both

input interconnect test and output interconnect test are required. Each bi-

directional boundary scan cell consists of one input cell, one output cell, and

one output-enable cell. An output interconnect test is a test doing serial scan-in

through the boundary scan chain and comparing the output values of the pads

in parallel. This test can detect shorts between any output cells. An input

interconnect test is a test applying the test values on the pads in parallel and

scanning out the value through the boundary scan chain and comparing the

values at the output of the chain. This test can detect shorts between any

input cells. The number of required comparison cycles C for N pins on the

package can be calculated by Equation 5.1, which is the ceiling function of the

logarithm value. The C number of comparison patterns can be obtained by

making array values with all possible binary combinations by the digit of C

except one of the cases having all identical bits. When the N pin is a power

of 2, both all zero and all one cases need to be added into the array. Each

pattern can be taken by each column from the array. This is referred to as the

counting algorithm.

C = dlog2Ne (5.1)

For the N pins on the package, the C input interconnect test patterns

50

and C output interconnect test patterns are required. If the N is big for a

large design, then 2C calculated using Equation 5.1 is much smaller than 4N.

The 4N asymmetric patterns consist of 2N input asymmetric test patterns

and 2N output asymmetric patterns. These interconnect tests have huge test

time benefit over asymmetric tests while achieving the same test coverage, but

these tests require direct test channels to check the scanned-in values.

5.3.2 Contactless Vector Generation

Most pins on an SOC package are bi-directional pins. To test for shorts

on the top pins, all bi-directional top pins are redefined as output pins, and

all bi-directional bottom pins are redefined as input pins in the BSDL file

as shown in Figure 5.2. An output interconnect test was generated with the

GOEPEL tool.

By default, this generated test has stimulus on test access port (TAP)

pins at the bottom of the package and comparison cycles for all the pins on

the package, but with no channel for the top pins, the comparison values for

the top pins cannot be checked on the ATE, which means the functional test

vector never fails for any cases, but if there are some shorts between any top

pins, the leakage current on the connected power supply goes up significantly.

Hence, this test vector can be used as a leakage test to detect the shorts on

the top pins that have no direct test channel. For the given comparison cycles,

the leakage current is compared to the nominal current, and excessive current

indicates the existence of shorts on the top pins.

51

Figure 5.2: Contactless Leakage Test Configuration

Because the commercial test generation tool provides a test suite with

different test features, the test generation result with interconnect test itself

showed missing test pairs. As shown in Figure 5.3, the test coverage analysis

flow is implemented making sure the contactless test has 100% test coverage.

5.4 Extension to Multi-site Testing

The initial test flow may be performed with all the pins on the package,

but the test channels are very expensive and the number of the test channels

per Circuit Under Test (CUT) should be minimized. Hence, the initial pro-

duction flow is performed with a limited pin configuration, which specifies only

the critical signals, but this limited pin configuration supports all the different

52

Figure 5.3: Contactless vector flow

types of structural tests and functional tests.

Once the initial production flow is fully verified, higher production vol-

ume can be achieved by testing more of the CUTs at the same time. Because

the number of test channels on ATE is limited, the limited pin configuration

has to be reduced further for multi-site testing. The amount of affordable

multi-site testing is dependent on the size of the SOC chip and the complex-

ity of the tests, but usually the number of multiple CUTs that can be tested

ranges from 8 to 16 or more. Testing n CUTs in parallel is called nX testing.

For example, 8X testing deals with eight CUTs in parallel, and it allowes only

small number of pins per CUT because pins on ATE is limited. Also, access

to the top pins is not allowed in 8X testing. Even for the bottom pins, the use

53

of fewer pins would be desirable. As a contactless test configuration for 8X

testing, the inaccessible bottom pins could be redefined as output pins. The

pins defined to have direct channels for the 8X test configuration have to be

changed into input only pins. Figure 5.4 shows the multi-site test configura-

tion.

Figure 5.4: Contactless leakage test for multi-site testing

With the modified BSDL file as stated previously, the same test genera-

tion scheme can be used. For the given comparison cycles, the leakage current

can be measured to check for possible shorts on the pins that have no direct

test channels.

54

5.5 Experimental Results and Conclusion

The contactless leakage tests are developed for production test flow. To

check the capability of the contactless leakage tests, artificial resistive shorts

were created manually wiring all the combinations of shorts and checked by

the tests. There was no test escape for any of the given combinations. Figure

5.1 shows the detailed experimental cases by a resistive short of 100 Ω. The

applied resistive short caused a leakage current ranging from 10 to 100 times

greater than nominal leakage current depending on the used resistance value.

By setting proper threshold values, shorts on the pins that do not have direct

test channels can be detected efficiently.

Table 5.1: Leakage current by artificial shorts

Experimental Leakage current Leakage current
cases on VDD PAD1 on VDD PAD2

No short (PASS) 1746.65 1501.944
Short 2 pins in pin group A 1747.667 11301.411
Short 2 pins in pin group B 11620.545 1556.945

Short 1 pin with power 15928.135 1577.046
Short 1 pin with ground 18778.884 1798.732

(Leakage current unit: µA)

Boundary scan chains are given to most modern designs. Key point

of this chapter is to maximize the usage of the boundary scan chains in the

SOC, and the testing of top pins on POP devices has been achieved by sensing

leakage current by scanning in minimum sets of stimulus patterns.

55

Chapter 6

Structural Test Time Reduction by

Transition Delay Fault Grading

As very large-scale integrated (VLSI) circuit operation speeds become

faster, signal transmission in the circuit should be finished in less time. High-

speed circuits with aggressive timing permit only very small delay slacks along

many internal circuit paths. Hence, small process variations during VLSI

fabrication may cause multiple delay faults having various magnitudes in the

circuits. Hence, delay fault testing has become more important. Accompanied

by this delay fault testing, conventional static testing also needs to be included

in the production flow in order to assure the high quality of the tested products

[27, 28].

A stuck-at fault can be considered as a Transition Delay Fault (TDF)

having an infinite delay. Hence, TDF grading was performed to estimate the

TDF vectors’ capability to detect stuck-at faults. Because those TDF vectors

can detect some or many stuck-at faults, the static Automatic Test Pattern

Generation (ATPG) process can be targeted for only undetected stuck-at faults

left from the TDF grading. Then, this reduced stuck-at faults set would result

in fewer static ATPG patterns. The overall structural test time can be reduced

56

while keeping the same test coverage.

6.1 TDF grading strategy

The latest industry designs have adopted core-based DFT, and multiple

core domains are isolated by a DFT design or a test access mechanism (TAM),

which is compliant with IEEE P1500. Because these TDF tests are generated

for each frequency domain per core, the total amount of TDF test time is very

significant, but the typical delay test coverage for complex industrial design

is still too tough to get 90%. Both static ATPG tests and delay ATPG tests

need to be kept in a production flow to ensure high quality.

Three commonly used delay fault models are the transition fault model,

the gate fault model, and the path delay fault model. The transition fault

model assumes that the delay fault affects only one gate in the circuit, and the

extra delay caused by the fault is large enough to prevent the transition from

reaching any primary output within the specification time. This fault can be

detected on any sensitized path through the fault site. The gate delay fault

model captures small and large delay defects that affect single locations in the

circuit. The path delay fault model captures small extra delays, such that

each one by itself may not cause the circuit to fail, but their cumulative effect

along a path from inputs to outputs may result in faulty behavior [29, 30]. The

advantages of the TDF model are that the number of faults in the circuit is

linear with the number of gates. The stuck-at fault test generation procedure

can be easily modified for transition delay test generation. In this chapter,

57

this delay fault test will be addressed as a transition delay test.

6.2 TDF Grading Flow

The TDF grading is performed using the Synopsys ATPG tool called

TetraMAX. Because this TetraMAX tool was used to generate both the stuck-

at ATPG patterns and the TDF patterns, the TDF grading process is fully

compatible in the tool for the same design netlist.

Figure 6.1: TDF grading flow

Figure 6.1 describes the flow of TDF grading. After reading in the

design and completing the design rule check, one TDF test for each frequency

domain is being set as test patterns. Static fault simulation is performed

58

with the full list of stuck-at faults. Then, each TDF test can have individual

stuck-at fault coverage.

First, the TDF test having the highest individual stuck-at fault coverage

is used as the test patterns for fault grading, and static fault simulation is

performed with the full list of stuck-at faults. This one procedure with one

TDF test and the given stuck-at fault sets can be called one TDF grading step.

From one TDF grading step, the undetected stuck-at faults are fed into the

next TDF fault grading step with different TDF patterns. Within the given

core, multiple frequency domains exist. The order of frequency domains in the

TDF grading can be decided by the individual stuck-at fault coverage of each

domain. The higher the stuck-at fault coverage, the more stuck-at faults can

be detected in the TDF grading step. By trying the better TDF tests first,

more stuck-at faults can be detected at the beginning of the TDF grading

steps, and the overall TDF grading process can be accelerated. These steps

can be repeated for each core.

6.3 Experimental Results

For the TDF grading experiment, Qualcomm’s 45nm SOC is used. This

SOC has a core-based DFT design having eight separate cores isolated by

IEEE P1500. Each core has different sets of fault sets and multiple frequency

domains.

59

Figure 6.2: TOP: individual coverage per frequency domain

Figure 6.3: TOP: cumulative coverage per frequency domain

6.3.1 Core1 - TOP

As can be seen in Figure 6.2, the TOP core has six different frequency

domains. As stated earlier, the order of TDF grading is decided based on

60

individual stuck-at fault coverage. Starting with the F9 domain having the

highest coverage, a series of TDF grading steps is performed accordingly. The

sequence is F9, F10, F8, F15, F18, and F14 in this case. Because one TDF

grading step takes the undetected stuck-at fault sets from the previous TDF

grading step, the undetected stuck-at faults by any of the TDF tests in the

given core will remain in the stuck-at fault list as undetected. The stuck-at

ATPG generation process will target this undetected fault list, and it will gen-

erate a reduced number of stuck-at ATPG patterns. Overall stuck-at coverage

remains the same. Figure 6.3 shows this TOP core’s cumulative coverage.

With the six TDF tests in the TOP core, a stuck-at coverage of 81.64% is

achieved. The original stuck-at ATPG pattern count for TOP core was 5346,

but the newly generated stuck-at ATPG pattern count after TDF grading is

4,194. This results in a test time saving of 21.55%.

6.3.2 Core2 - SUBSYSTEM

As can be seen in Figure 6.4, the SUBSYSTEM core is a very big core

having nine different frequency domains. Starting with the F9 domain that has

the highest coverage, a series of TDF grading steps is performed accordingly.

Figure 6.5 shows this SUBSYSTEM core’s cumulative coverage. With the nine

TDF tests in the SUBSYSTEM core, a 90.31% stuck-at coverage is achieved.

The original stuck-at ATPG pattern count for SUBSYSTEM core was 5,356,

but the newly generated stuck-at ATPG pattern count after TDF grading is

4,521. This results in a test time saving of 15.59%. Figure 6.6 shows the stuck-

61

Figure 6.4: SUBSYSTEM: individual coverage per frequency domain

Figure 6.5: SUBSYSTEM: cumulative coverage per frequency domain

at coverage trend per pattern with and without TDF grading. The same level

of test coverage is achieved with less number of patterns by TDF grading.

62

Figure 6.6: SUBSYSTEM: coverage comparison

6.3.3 Core3 - GRAPHICS 2D

The GRAPHICS 2D core has only two frequency domains. One TDF

test has almost no test coverage, but the other TDF test has shown 90.28%

coverage. The TDF test having higher coverage is fed into TDF grading step.

The original stuck-at ATPG pattern count for GRAPHICS 2D core was 1,204,

but the newly generated stuck-at ATPG pattern count after TDF grading is

1,066. This results in a test time saving of 11.46%. Figure 6.7 shows the

stuck-at coverage trend per pattern with and without TDF grading.

63

Figure 6.7: GRAPHICS 2D: coverage comparison

6.3.4 Core4 - GRAPHICS 3D

The GRAPHICS 3D core also has only two frequency domains. Those

two TDF tests are fed into TDF grading steps accordingly, and the cumulative

stuck-at coverage is 94.54%. The original stuck-at ATPG pattern count for

the GRAPHICS 3D core was 2,420, but the newly generated stuck-at ATPG

pattern count after TDF grading is 1,798. This results in a test time saving

of 25.70%. Figure 6.8 shows the stuck-at coverage trend per pattern with and

without TDF grading.

64

Figure 6.8: GRAPHICS 3D: coverage comparison

6.3.5 Core5 - MODEM

As can be seen in Figure 6.9, the MODEM core is also a very big core

having nine different frequency domains. Starting with the F6 domain having

the highest coverage, a series of TDF grading steps is performed accordingly.

Figure 6.10 shows the MODEM core’s cumulative coverage. With the

nine TDF tests in the MODEM core, a 59.48% stuck-at coverage is achieved.

Compared with the SUBSYSTEM core, this MODEM core has less stuck-at

coverage with the nine TDF tests. The original stuck-at ATPG pattern count

for the MODEM core was 10309, but the newly generated stuck-at ATPG

pattern count after TDF grading is 9,832. This results in a test time saving of

65

Figure 6.9: MODEM: individual coverage per frequency domain

Figure 6.10: MODEM: cumulative coverage per frequency domain

4.63%. This MODEM core has the most complex logic and huge gate count.

The lack of a fully controllable DFT design in this core resulted in this low

coverage.

66

6.3.6 Core6 - ARM

The ARM core has only two frequency domains. Those two TDF tests

are fed into TDF grading steps accordingly, and the cumulative stuck-at cov-

erage is 92.32%. The original stuck-at ATPG pattern count for the ARM core

was 1,416, but the newly generated stuck-at ATPG pattern count after TDF

grading is 1,134. This results in a test time saving of 19.92%. Figure 6.11

shows the stuck-at coverage trend per pattern with and without TDF grading.

Figure 6.11: ARM: coverage comparison

6.3.7 Core7 - CPU

The CPU core has only three frequency domains. Those three TDF

tests are fed into TDF grading steps accordingly, and the cumulative stuck-at

67

coverage is 87.25%. The original stuck-at ATPG pattern count for CPU core

was 2,795, but the newly generated stuck-at ATPG pattern count after TDF

grading is 2,421. This results in a test time saving of 13.38%. Figure 6.12

shows the stuck-at coverage trend per pattern with and without TDF grading.

Figure 6.12: CPU: coverage comparison

6.3.8 Core8 - VIDEO

The VIDEO core has only two frequency domains. One TDF test has

almost no test coverage, but the other TDF test has shown 87.03% coverage.

The TDF test having higher coverage is fed into the TDF grading step. The

original stuck-at ATPG pattern count for the VIDEO core was 2,919, but the

newly generated stuck-at ATPG pattern count after TDF grading is 1,854.

68

This results in a test time saving of 36.49%. Figure 6.13 shows the stuck-at

coverage trend per pattern with and without TDF grading.

Figure 6.13: VIDEO: coverage comparison

6.4 Conclusion

TDF grading has been performed for all eight cores in the SOC. Some

cores show less coverage than the other cores, but most cores have shown a

significant test time reduction. Table 6.1 shows each core’s pattern count and

test cycles. To calculate the actual test time per core, the pattern count is

transformed into test cycles based on the longest scan chain length in the core.

The scan clock is running at 20 MHz.

69

Table 6.1: Test time reduction
Core Pattern Test Cycles Reduced Reduced

Count Pattern Count Test Cycles
TOP 5,346 2,170,581 4,194 1,702,846

SUB SYSTEM 5,356 2,099,915 4,521 1,772,538
ARM 1,416 432,342 1,134 346,240

GRP2D 1,204 195,886 1,066 173,434
GRP3D 2,420 694,469 1,798 515,973

MODEM 10,309 5,020,212 9,832 4,787,926
CPU 2,795 985,130 2,421 853,309

VIDEO 2,919 544,526 1,854 345,855

Total Test Cycles 12,143,061 10,498,122
Total Test Time 0.607 sec 0.525 sec

Hence, the actual test time is calculated by multiplying the scan clock

cycle time by the number of test cycles. Without considering TDF grading,

the total test time for the static ATPG test was 0.607 seconds. After TDF

grading, the total test time for static ATPG test came down to 0.525 seconds.

This is a 13.55% saving in the test time. There is a minimal coverage impact

by TDF grading. TDF grading provides a test time reduction while keeping

the same test coverage. When the initial production flow is being set up,

this TDF grading flow can be performed once to remove the overlap between

stuck-at ATPG tests and TDF ATPG tests. Then, the benefit of the reduced

test time will be accumulated and become a big saving as the production goes

through.

70

Chapter 7

Analog Behavioral Modeling:

Strategies and Methodologies

Complex system-on-chip (SOC) consists of many various kinds of dig-

ital and analog cores to achieve highly complicated features. All those cores

should be verified for their functionalities at the core level before they are

integrated into the SOC-level design. Once they are integrated into SOC

level, the design scale becomes bigger and it is harder to debug any potential

problems. Analog circuits are composed of basic devices such as transistors,

resistors, capacitors, and inductors. Transistor-level custom design implemen-

tation is required for analog circuits in mixed-signal cores, radio-frequency

(RF) cores, power management cores, etc. These cores cannot be verified by

the same way as digital cores are being verified via quick simulation. Ana-

log design verification requires circuit-level simulation using the ”Simulation

Program with Integrated Circuit Emphasis (SPICE) ” model. This process

takes an unacceptable amount of time when its scale is not small. In partic-

ular, the verification based on the SPICE model cannot be run together with

other digital verification methodologies. Analog behavioral models for those

analog cores can address the simulation speed issues and interoperability of

mixed verification with analog and digital cores. In addition, the validity of

71

the model-based simulation is contingent on the quality of behavioral models

used. Depending on the level of abstraction for the behavioral modeling, there

are some limitations for accurate performance analysis. Executing core-level

or block-level SPICE simulations may compensate for the lack of accuracy in

the analog behavioral model for performance analysis.

7.1 Behavioral Modeling Strategies

Analog signals can change in almost infinitely small increments in terms

of time and amplitude. To describe analog functionality, nonlinear equations

are required. Verification of analog circuits has traditionally been performed

using SPICE simulation, capable of iteratively solving a set of nonlinear equa-

tions. SPICE was developed at the University of California, Berkeley in the

early nineteen seventies, and since then many enhanced variations have been

produced by academia and commercial companies [2].

Behavioral modeling places the substitution of more abstract, less com-

putationally intensive circuit models to describe lower level functions of analog

circuits. These simplified models mimic the transfer characteristics of the cir-

cuit elements, but with increased efficiency, they lead to substantial reduction

in the actual simulation time per circuit. When considering the whole design

and total simulation time, this reduction in elapsed time per simulation can

lead to a tremendous increase in design and verification efficiency as well as

possible reduction in the time necessary to take a design from a concept to

a marketable product. Figure 7.1 shows simulation speed results among dif-

72

ferent simulation approaches. The simulation driven by hardware description

language (HDL) consumes linearly scaled time by design complexity whereas

SPICE simulation consumes exponentially increased simulation time as design

becomes complex. Advancements in SPICE simulation, such as Fast-SPICE,

provide additional speed and capacity while sacrificing some accuracy. In ad-

dition, distributed computing engines have further increased capacity and per-

formance limits, but not enough to keep up with growing size and complexity

of the mixed-signal designs.

Design Complexity

Simulation
Time

HDL Sim

SPICE Sim
Fast SPICE

Sim

Figure 7.1: Simulation time comparison

Figure 7.2 shows two main different modeling approaches for the analog

behavioral modeling. One is a top-down modeling approach, and the other is

a bottom-up modeling approach.

73

Design Phase
Time

Design
Stability

Design	
Specifica-on	

Complete	
Design	

Top	
Down	

Modeling	

Bottom
Up

Modeling

Figure 7.2: Modeling strategy

7.1.1 Top-Down Modeling

The analog behavioral model by top-down modeling approach can be

implemented by the specification of analog design blocks. The development

and the implementation of analog blocks take longer time and more effort than

digital blocks. In the beginning of design phase, only design specification is

decided for analog blocks. Although the analog development is ongoing, the

implementation of other upper-level system design can be started in parallel to

complete the final integrated product earlier. This upper-level system design

requires the function of the analog blocks to verify the system functionalities.

The key functional analog blocks are a phase-locked loop (PLL) for clock

generation and an analog-to-digital converter (ADC) or a digital-to-analog

converter (DAC) for data conversion. In the digital domain of the system

74

design, signal propagation needs to be hooked up between multiple blocks.

Top-down modeling can be used in this phase. The top-down models can

replace the analog blocks under development in the system design. In addition,

they can enable the early start of system design and verification. The top-

down model can simply represent the function of the modeling target, but if

oversimplification is done, the model may lose verification confidence. It is

important to select the proper level of modeling boundary and scope.

7.1.2 Bottom-up Modeling

Bottom-up modeling can be started after a certain phase of the analog

design when stable schematic design is ready for critical analog blocks. A

detailed modeling boundary needs to be decided for all sub-blocks. In addition,

each analog block in deep design hierarchy is replaced by a behavioral model

representing its behavior. In this time, all the signal connections should remain

the same as the schematic connection. This approach can detect overlooked

errors in the schematic connection and potential logical bugs. Because this

bottom-up modeling introduce less abstraction, the model is much closer to

the actual design, and it is easier to verify the analog design. In some cases,

over-modeling at the deep design hierarchy may affect simulation efficiency for

SoC-level simulation when the model is integrated into the SoC. Thus, it is

crucial to decide the proper level of modeling boundary.

75

7.2 Industrial Trends

Mixed-signal content, in most of today’s SOCs, has increased from 10-

20% to 50% or more due to increased needs for mobility, higher performance

and integration of interfaces. Similarly, what used to be pure analog blocks

now include significant amounts of digital logic either to increase functionality

or to assist the analog portions of the design achieve target performance [2].

Cummings presented proper ways to handle delays in circuits as Verilog

behavioral models [31, 32]. In the analog circuit design to be modeled for

behavioral model, critical delay lines have to be modeled correctly. Otherwise,

the improperly modeled delay may cause the analog core to malfunction. There

are various delay coding styles in hardware description languages, but very few

of the permitted coding styles actually model realistic hardware delays. The

inertial delay and transport delay scheme are widely used in the modeling

cases described in the next chapter.

One of key factors to be guaranteed by analog behavioral model is to

match and correlate between the analog model and the actual analog design.

One of the recommended methods to address this challenge is to co-simulate

the SPICE circuit with rest of the system [33, 34, 35]. Sharma et al. [36] pro-

posed a verification methodology to establish equivalence of analog behavioral

model and the SPICE circuit being modeled. The validity of the simulations

driven by behavioral models is contingent on the quality of the behavioral

models used. In the proposed scheme, SPICE-on-top co-simulation environ-

ment to simulate the behavioral model in the same SPICE testbench that is

76

used for circuit characterization using SPICE simulations, and circuit char-

acteristics/metrics of interest are defined and checkers in the co-simulation

environment are developed to measure them.

7.3 Analog Traffic Modeling

In analog behavioral modeling, electrical signals such as voltage and

current need to be represented as real numbers to achieve accuracy and corre-

sponding functionality for real analog signal propagation. This is in contrast

to digital circuits that can be handled by four value logic (0, 1, Z, X). The

interface in the analog model passes those real numbers between blocks and

mimics actual signal transfer and propagation.

Analog behavioral models are typically written in Verilog, Verilog-AMS,

Verilog-A, VHDL-AMS, or SystemVerilog. The Verilog-A and Verilog-AMS

represent real electrical properties of the analog circuit in detail, and they are

usually used for performance verification. However, circuit performance can be

verified more accurately by circuit-level simulation without having behavioral

models.

Figure 7.3 shows modeling accuracy and performance gain for the vari-

ous real number modeling methods. In real number modeling, analog voltages

or currents are represented as a time-varying sequence of real values, This

is actually very similar to what analog simulators do. The difference is that

in a typical analog simulator, the models define a set of equations and the

simulator solves the overall constrained system of simultaneous equations at

77

each timestamp to compute the voltage or current from those equations. In a

discrete real environment such as Verilog-AMS, VHDL-AMS, SystemVerilog,

there is no voltage or current equations, and there is no simultaneous equation

solution step. The output is directly computed from the input by ignoring

the voltage or current and other feedback mechanisms that could have caused

interdependencies between drive and load in an electrical environment [2].

Verilog-AMS
VHDL-AMS

Pure
Digital

Performance

SPICE

A
cc

ur
ac

y

FastSPICE Verilog-A

Real/
Wreal

Figure 7.3: Modeling accuracy versus performance gain compared to
transistor-level simulation for various modeling styles [2]

When the analog models are integrated into the SOC level, the majority

of the SOC design consists of digital designs implemented by Verilog or VHDL.

Also, those analog cores are needed in many different cores or sub-systems.

On the digital design side, extensive verification effort is applied to the digital

78

design and analog models. The models developed by Verilog-A or Verilog-

AMS do not provide full compatibility with digital design code. Although

those models can be used, it may drag down the efficiency of the SOC level

verification. In other words, the challenge is to model analog blocks for a

digital simulator. In addition, the model should support multiple different

digital simulators in the verification chain as shown in Figure 7.4.

Figure 7.4: Simulators in verification chain

Hence, the proper solution is to restrict the analog model to be de-

79

veloped by compatible HDL languages with digital design such as Verilog or

SystemVerilog. The analog model developed by these HDL languages may not

have enough accuracy and variety to support all different corner conditions as

SPICE model does. However, the main goal of the analog model is to verify

the correctness of the analog design and accelerate the verification processes

and enable compatible integration for the upper-level digital design systems.

The analog model is mainly targeted for typical corner of what actual analog

design covers. For the critical timing of the analog circuits, the typical delay

values are extracted from sub-block level SPICE simulations and the values

are embedded into the analog model of the analog block. All other general

logics in the analog design are implemented as non-timing logics in the analog

model, and for the timing critical sections such as scan logic involving ana-

log logics, the timing verification can be performed with the extracted timing

from the layout of the analog design. The next section shows multiple different

methods used in this research to represent the analog traffic by Verilog code.

7.3.1 Analog Wire Interface

Analog Wire Interface (AWI) is an analog interface module developed

as a Verilog programming language interface (PLI) function. This AWI module

is developed by the Australian Semiconductor Technology Company (ASTC).

Between the AWI modules, the analog signals representing electrical property

are transferred through telegraph coding. Figure 7.5 shows the structure of

the AWI modules. The analog signal cannot be probed at the ports having the

80

AWI module behind, but the analog signal values in the AWI can be referenced

in the manipulation of the analog signal activities from the analog model.

Electrical	
Property	

Digital	
Net	

Enable	
Control	

Electrical	
Property	

Digital	
Net	

Enable	
Control	

Port
A

Port
B

Real_Out Real_In

Figure 7.5: Real signal traffic model

There are two types of AWI modules. The AWI Realout, which sends

out the real value of analog signal, and the AWI Realin, which receives the

real value of the analog signal being sent by the AWI Realout. With these

AWI modules, current or voltage values are treated as just a real number.

The actual conversion between voltage and current by Ohm’s law has to be

performed in the analog model code by a user.

In analog circuit cases, some shared nodes have to be resolved for volt-

age division or current summation. This AWI module cannot handle Kirch-

hoff’s laws. However, this AWI module is quite flexible and has good compat-

81

ibility with digital design code. This AWI is solid enough to handle the analog

signal traffic in large scale design.

7.3.2 Virtual Verilog Wire

Verilog virtual wire (VVW) is also a Verilog PLI module developed

by ASTC. Compared with the AWI in the previous section, this VVW can

handle more realistic analog signal traffic. There are multiple different kinds

of VVW modules to handle voltage and current, input and output, baseband

signals, and radio frequency signals. There are a total of 12 different VVW

modules. Shared nodes in analog circuits can be modeled by VVW modules

to implement divided voltage into multiple load, and merged nodes can be

modeled for current summation. The modeling by VVW modules is suitable

for small scale design with very detailed analog modeling.

7.4 Modeling Flow

Analog modeling can be started with modeling boundary identification

and analysis of each modeling target block. The scope of analog design is

given as the hierarchical layers of schematics from analog designers based on

the design readiness. The goal of analog behavioral modeling is to verify the

given analog design. Majority of the analog block analysis is performed by an

analog modeler (me) as a part of modeling process. Since the analog modeler

(me) is not as familiar with the detailed analog circuits as the analog designers

who designed the circuits, some of modeling directions and approaches for

82

intensive analog blocks are based on the comments and analog simulation

results performed by analog designers.

Once the modeling boundary is identified, the developed analog model

would be aligned with the schematic at each modeling boundary. The top-level

pin interface of the analog model should match with the pin interface of the

actual analog design blocks. Although the functionality of some pins are not

modeled by the in-necessity from the model requirements, the pin interface has

to be matching each other. Otherwise, the model may end up some warnings

in the simulation by the unconnected ports or mismatching pins.

After defining the model boundary, the model skeleton needs to be

written with the matching pin names and directions for the modeling tar-

get block. Because this model skeleton should match with the actual design

ports, a script-based automation is preferred to avoid any human mistakes

or errors. During the multiple design phases, it is very likely to have the in-

put/output interface of the design and model to be updated multiple times.

This script-based model skeleton generation is one of the key factors to speed

up the modeling process. For this script-based model skeleton generation, a

customized in-house tool is used. Some feature enhancement of the in-house

tool is achieved by me. Also, some health check signals can enhance the qual-

ity of the model and verification for confirming supply and ground connection

and the enabling conditions for the modeling target block. The in-house tool

provides an automated template to easily build those health check signals.

Those health checks can be confirmed by an assertion, which is a positive

83

statement about the given property of a design. When this statement is found

to be false, it indicates an error. Those assertion-based checks can enhance

the model’s capability. On top of those health check signals, the actual model

body code that represents the behavior of the modeling target block needs

to be developed by modelers. This step is the main critical stream of the

modeling process and requires deeply experienced skills.

Analyze	 analog	 block	

Iden0fy	 modeling	 boundaries	

Develop/Modify	 model	 code	
for	 each	 sub-‐block	

Netlis0ng	 out	 	

Design	 view	 adjustment	

Post	 Processing	

Verifica0on	 simula0ons	
Is	 model	
good	

enough?	

No

Complete	
Yes

Figure 7.6: Behavioral modeling flow

When the models for all critical blocks are ready, the whole design can

be extracted by an electronic design automation (EDA) tool. This extrac-

84

tion process is referred as ”Netlisting”. Through this netlisting process, the

connections in the schematic design can be extracted as a readable netlist in-

cluding the developed models and standard cell libraries used in the analog

designs. In this research, Cadence OSS netlister is used. Since the output of

the netlister is a Verilog AMS code, a post-processing is required to convert

the Verilog AMS code into a Verilog code. And then, this generated Verilog

model has to be verified through various test cases and validated by multi-

ple iterations of modification, generation, and verification. This verification

procedures are also the responsibility of the modelers, because the modelers

know the detailed modeling scope and modeled design specifications. This

model-based verification process was done by me, since it requires a signifi-

cant experience. Figure 7.6 shows the modeling flow described so far. In this

diagram, only netlisting step relies on a commercial tool. All other steps are

completed by the modeler which I contributed for this research. In order to

get a complete model of the given analog core, the model of each sub-block

at the identified modeling boundary has to be implemented and verified by

looping the sequence described in Figure 7.6.

7.5 Model Verification

Without validating the model by extensive verification cases for all

specifications, the model is not guaranteed to function correctly and match

with the actual design. Without enough level of verification, the model should

not be deployed to upper-level design blocks for integration.

85

Assertions in the model flag simple low-level problems that would be te-

dious to check visually. For example, power supply connections can be visually

checked for each block, but if the model has the assertions for the power supply

connections, the power line connectivity checks can be easily performed. Sim-

ulation symptoms by verification cases would flag high level problems showing

real issues in the design or model. Through these model-based verifications,

any undetected bugs in the design or testbench can be revealed before the

design goes to actual fabrication. The most common problems in the analog

design are incorrect MUX selection logic, swapped connections in the bused

signals, inverted reset polarity, and so on.

The development of verification cases can be generated by going through

the key critical specifications. However, some generic process should make sure

there is no holes in the model-based verification. Code coverage analysis can

find out any potential holes in the verification plans or any logical redundancy

or uncovered logical implementation. Code coverage analysis checks various

aspects of coverage numbers such as statement coverage, conditional coverage,

and branch coverage. This code coverage analysis was performed by me using

the supporting feature in commercial EDA tools. The next Chapter shows

more detailed verification cases with actual large scale mixed-signal design.

86

Chapter 8

Mixed-Signal Design Verification by

Analog Behavioral Model

Verification of mixed-signal designs with clearly separated analog and

digital sections was possible in the past, using independent analog and mixed-

signal methodologies. Today, analog and digital functionality is tightly inte-

grated throughout the entire design at different levels of hierarchy, and cannot

be verified separately [2, 37]. In comparison with the total chip development

effort, the portion of effort spent in design verification is growing at a faster

rate and consuming a significantly larger portion of the development cost.

Design verification is a necessary process to ensure a quality design.

Usually, digital design is accompanied with well-defined verification plan and

thoroughly verified from multiple design stages. However, the verification

of mixed-signal design requires slow transistor-level simulations or repetitive

Monte Carlo simulations. Within a given short time for product market, it

is not feasible to cover all verification aspects by those analog simulations.

Although those analog simulation methods covers performance related verifi-

cations, analog behavioral model can achieve fast simulations for functional

verifications. By virtue of fast simulation time with analog behavioral model,

87

such functional verification may uncover potential design bugs by applying

comprehensive test cases with quick turnaround time.

As the design specifications are getting complex and support many fea-

tures with complicated setups, the functionalities of those mixed-signal cores

are partitioned into multiple different sub-blocks and implemented by suit-

able design flows such as finite state machine (FSM) based digital designs for

complex controllability and transistor based analog designs for highly tunable

designs. At the end, these sub-blocks need to be integrated together and

verified for its functionality at the full design level. In complex mixed-signal

design cases, comprehensive verification at the full design level is not doable

simply. This chapter describes how the analog modeling can be beneficial for

mixed-signal design verification.

8.1 Calibration Verification for Digital-to-Analog Con-
verter

1A system-on-chip (SOC) supporting modern wireless communication

systems includes a baseband Modem. A digital-to-analog Converter (DAC)

core in the SOC converts modulated baseband wireless digital data streams

into analog waveforms. Since the latest SoC with a modem supports many

different communication specifications, it is very challenging to meet the dy-

namic requirement for the spectral quality of the converted analog waveform

1The work in this section was performed by me using the procedure that is described
here.

88

from the DAC. Although the DAC core includes many advanced features to

achieve the high quality of data conversion, a solid calibration capability is

a key feature that cannot be skipped. The DAC design referred to in this

chapter includes FSM-driven calibration features. Figure 8.1 shows key blocks

in the DAC design.

FSM_TOP

BIAS_TOP

R-tune Logic

Calibration Unit Arrays

Digital

Analog

Figure 8.1: DAC block diagram

The FSM design is a purely digital design block and given by digital

designers, and the DAC analog model includes the RTL code or synthesized

netlist of the FSM block. The bias generation block is an analog circuit block

89

that generates and controls the required bias current and voltage for other

DAC blocks. Too much detailed deep-down modeling of all the bias generation

signals would slow down the model-based simulation performance. Hence, a

simple equation based bias generation model and the model for R-tune logic

are implemented for the bias generation block. The DAC core includes a deep

hierarchical mixed-signal design including current source cells for each data

bit. The modeling boundary is lowered as much as I can and the hierarchical

schematic connections are fully preserved in the DAC analog model. All the

blocks impacting key functionalities of the DAC core are implemented at each

modeling boundary.

8.1.1 Silicon Mismatch Modeling

In the DAC design, the converted analog outputs are represented by

the total summed current output from the current source circuits representing

each data bit. The DAC output has two channels and each channel has 64

current sources inside. Then, those current values are added together to rep-

resent the analog output of the DAC. Although the current source circuit is

identical for all data bits, process variations from manufacturing process may

introduce some mismatches in the gain of the current source cells. The gate

dimensions of metal oxide semiconductor field effect transistors (MOSFETs)

suffer from random, microscopic variations, and hence, mismatches between

the equivalent lengths and widths of two transistors that are identically laid

out. Also, metal oxide semiconductor (MOS) devices exhibit a threshold volt-

90

age mismatch because the threshold voltage is a function of the doping levels

in the channel and the gate, and these levels vary randomly from one device

to another [38].

These random mismatches degrade the DAC’s performance and impact

the quality of the DAC output. In particular, the mismatches on the P-

type MOS (PMOS) transistor of the current sources are dominant for the

DAC output quality. With the calibration feature in the DAC design, those

mismatches need to be compensated, and each device needs to be tuned to

create an accurate analog output. To verify the full calibration features, the

DAC-level simulations need to be performed by incorporating both digital

FSM design and whole analog blocks. The digital FSM design code can be

hooked up with the analog design, and if these full scale simulations with the

FSM design and the analog circuits are performed in analog SPICE simulator,

it may require a long repetitive Monte-Carlo simulations, and its simulation

time can be very long from few hours to few days.

Figure 8.2 shows the PMOS-based current source design. The BIAS TOP

block in Figure 8.1 generates a bias current of 125 µA, and the ideal output

of current source with no mismatch is 31.25 µA. In real silicon, this output

value might vary because of the random mismatches on the PMOS transistors.

Hence, the models for the PMOS-based current source design, compensation

current generation block, and random mismatch insertion scheme are imple-

mented. The calibration logic generates a compensation current based on the

given calibration data and makes the summed current output to be tuned

91

Bias current

CALDAC	
Memory	 cells	

Dominant
mismatch

Supply

Ideal current
with no mismatch

Compensation
current

Calibrated
current

Calibra2on	
Logic	

Figure 8.2: Modeling of mismatches in current source

within error range. Also, the calibrated data can be read back and stored into

nonvolatile memory.

To model the random mismatch, random values having normal distri-

bution are generated by Verilog built-in function, $dist normal and added into

the implemented Verilog model of the current source in Figure 8.2. This ran-

dom mismatch inserted case is compared with the ideal case with no mismatch.

The detailed simulation results are described in the next section.

8.1.2 Simulation Results

Figure 8.3 shows the calibration result by model-based calibration sim-

ulation. The X axis is the index of each current source, and the Y axis is the

92

current output value of each current source.

31#

31.5#

32#

32.5#

33#

33.5#

34#

0# 20# 40# 60# 80# 100# 120# 140#

Ideal#value#

Before#Calibra9on#

A<er#Calibra9on#

Calibration Error

Current Source Output (unit : µA)

Current Source Index

Figure 8.3: Offset errors from calibration

The initial gain values of the current sources in the DAC design are

contaminated by random mismatches, and the required calibration sequences

are performed by the DAC model. Because the random mismatch may have

certain offset and variance, the ideal value at 31.25 µA is spread by the given

distribution. Then, most significant bit (MSB) calibration is performed, and

all those values are calibrated into the maximum value of the mismatched

values. This MSB calibration adjusts only the variance of the mismatch values.

In real silicon, the offset amount might not be big, but a little excessive offset

93

is used in this experiment for better visualization. As shown in Figure 8.3, if

only MSB calibration is performed, calibration offset error can be left. This

offset also needs to be calibrated by combining other types of calibrations.

To adjust the offset of mismatches, the resistance-tuning (R-tuning) cal-

ibration is combined with the MSB calibration. Figure 8.4 shows the combined

result of MSB calibration and R-tuning calibration. The MSB calibration ad-

justs the variance of mismatches, whereas the R-tuning calibration adjusts

the offset of mismatches. In this case, two different types of calibrations are

applied in the following order:

• First R-tuning calibration

• MSB calibration

• Second R-tuning calibration

The first R-tuning calibration compensated the offset of the mismatches

values, and the calibrated values by the first R-tuning calibration are spread

with variance around the ideal values. Then, the MSB calibration is applied,

and the variance of the mismatched values is compensated. As shown in Fig-

ure 8.4, the calibrated values by the MSB calibration still have some offset

error because the MSB calibration converged the mismatch values into the

maximum value among the mismatch values. To compensate this remaining

offset further, the second R-tuning calibration is applied, and the final cali-

brated values are almost perfectly aligned with the ideal values. This multiple

94

29.5%

30%

30.5%

31%

31.5%

32%

32.5%

33%

33.5%

34%

34.5%

0% 20% 40% 60% 80% 100% 120% 140%

Ideal%value%

Added%mismatch%

1st%Rtunning%

MSB%CAL%done%

2nd%Rtunning%

Current Source Output (unit : µA)

Current Source Index

Figure 8.4: Calibration results

calibration sequence is controlled by the FSM block based on the programmed

register values on the DAC core. The verification of this full calibration se-

quence is performed with the implemented behavioral model of the DAC core,

and provided perfect calibration result as shown in Figure 8.4.

When the variance of the mismatch values is increased more, such

highly varying values would exceed the DAC’s calibration capability. Because

this model-based simulation can be performed with a short turnaround time,

different mismatch values can be applied to identify the saturation range of the

DAC. With this excessive mismatch values, some outliers are shown as plotted

95

29.5%

30%

30.5%

31%

31.5%

32%

32.5%

33%

33.5%

34%

34.5%

0% 20% 40% 60% 80% 100% 120% 140%

Ideal%value%

Added%mismatch%

1st%Rtunning%

MSB%CAL%Done%

2nd%Rtunning%

Current Source Output (unit : µA)

Current Source Index

Figure 8.5: Calibration results with excessive mismatches

in Figure 8.5. By running these verification approaches, this saturation range

of the DAC can be identified and used to predict the yield of the devices from

process variation.

Figure 8.6 shows the analog outputs of the DAC from model-based

verification simulation converted from digitized sine wave input under different

gain settings. The adjusted bias current is generated from the bias block model

for different gain settings, and the corresponding amplitude of the sine wave

is measured for each case. In the waveform, the I channel output, ”i1” and

the inverted output, ”i1b” show exactly opposite shapes and the sum of those

96

two current outputs from the DAC model always stays consistent as intended

by the DAC design. The other Q channel has the same result.

I	 channel	 P	

I	 channel	 N	

Q	 channel	 P	

Q	 channel	 N	

-‐3dB	 -‐6dB	 -‐9dB	 -‐12dB	 Gain	 0dB	 -‐15dB	 -‐18dB	

Figure 8.6: Converted DAC output from digitized sine wave

This section has described how the analog model of the DAC can accel-

erate the full verification of calibration processes by incorporating both digital

FSM design and analog schematic designs. Furthermore, potential silicon mis-

matches are modeled and inserted into the model, and the convergence of the

calibrated current values at each current source inside the design is verified.

When this calibration verification is performed by SPICE simulation, it takes

from few hours to few days. However, the model-based verification can be

performed within few seconds. This model-based verification approach can be

used to verify the validity of the calibration algorithm in the early design stage

at architectural phase and the correctness of the initial design implementation.

97

8.2 Clock Generation Verification for Phase-Locked Loop

2The Phase-Locked Loop (PLL) is widely used to generate and dis-

tribute clocks in most high-performance digital systems. The PLL is an analog

design core, but it has to be integrated with various digital blocks to enable

the synchronous operation of the digital design blocks. Functional simulation

and verification of the digital blocks require to have a compatible representa-

tion of the PLLs. The analog behavioral model of the PLL can be used for

the development and verification of the digital systems. Because the latest

PLL design supports many different configurable features, the PLL design it-

self needs to be verified via an analog model before the PLL is integrated into

a whole system for manufacturing.

The PLL model can be beneficial from both top-down modeling and

bottom-up modeling. In the early stage of design, the block-level digital design

is ongoing, whereas the analog implementation of PLLs is not quite completed.

In this case, the specification of the PLL is ready. Hence, top-down modeling

can be performed based on the PLL specification and enables clocks for the

digital design blocks. After a certain stage of the PLL design, the top-down

model can be replaced by a more detailed and closer model to the actual design

by bottom-up modeling.

2The work in this section was performed by me using the procedure that is described
here.

98

8.2.1 Open-loop PLL model

As shown in Figure 8.7, a typical PLL design is controlled by a closed

loop. In the diagram, the charge pump, loop filter, and voltage-controlled oscil-

lator (VCO) blocks are implemented by extensive analog circuit. In addition,

other blocks are implemented by mixed design.

Charge	
Pump	

Phase/
Frequency	
Detector	

Divider	

Loop	
Filter	

Reference
Clock

PLL
Clock

Control	
Logic	

VCO	

Figure 8.7: PLL block diagram

In this VCO-based PLL design, the detailed modeling of each analog

block does not have much benefit. If this PLL design is hierarchically modeled

with a closed-loop signal propagation, the model itself would add a significant

simulation overhead to the SOC-level simulations. Especially, when many

instances of PLL cores are integrated into the SOC level, this simulation over-

head might be worsened. The accuracy and performance of the analog design

portion of the PLL can be verified by analog simulation, and the behavioral

model of the PLL can be achieved by open-loop control with full functionality

via behavioral abstraction. The ultimate goal of the PLL model is to generate

the correct PLL output clock with enough level of accuracy. This high-level

99

abstraction as an open-loop PLL model can be implemented quickly and en-

able early starting of design verification for upper-level systems. Figure 8.8

shows the diagram of the open-loop PLL model.

Behavioral	 Model	
for	

Analog	 Logics	
	

(Power-‐up	 :ming,	
Clock	 Gen,	

Lock	 detec:on)	 Divider	

Reference
Clock

PLL
Clocks

Control	
Logic	

Figure 8.8: Open-loop PLL model

The abstracted PLL analog model includes all possible checks for the

functional and electrical specification of the PLL analog features, such as

power up timing sequence, PLL lock time, allowed voltage controlled oscil-

lation (VCO) frequency range per given VCO mode, jitter filter, and analog

behavior for losing PLL lock from changing the multiplier value, or drift of

the reference clock. All these checks are implemented with various assertion

schemes in the PLL model. When the PLL model is used in the stimulus-

driven simulations, any incorrect sequences or settings can be filtered by the

assertion messaging schemes. This can minimize the unnecessary debugging

time for incorrectly generated test vectors that fail on silicon.

The PLL lock time is usually approximately 50 microseconds based

on the design specification. Just for faster simulation speed, the PLL model

100

supports fast mode by adjusting the PLL lock time to 1 microsecond. Then,

all the simulation-based verifications can be done quicker. Only the final

simulation to generate a functional test vector needs to use the actual PLL

lock time. Figure 8.9 shows the PLL frequency outputs by the PLL model

within the allowed frequency range.

Output
Frequency

Lock Detect

Control
Inputs

Figure 8.9: Frequency sweep with PLL model

Fast clocking for high-speed memory requires very accurate clock gen-

eration. In this case, the fractional portion of PLL multiplier is enabled to

generate accurate frequency. To get enough resolution in the generated clock

period, the simulation resolution in the Verilog model can be set to picosecond

or femtosecond, but this finer resolution in the PLL model may slow down SoC-

level simulations including the PLL model. Hence, proper scheme is included

in the PLL model to avoid rounding error accumulation. If the simulation

resolution is picosecond, a variation of 1 picosecond might happen depending

on the given PLL setup. This is within the jitter spec of the PLL.

101

8.2.2 Closed-loop PLL model

For portable or mobile applications, lock-in time is very important since

the PLL must support fast entry and exit from power management techniques

[39]. PLLs often operates in a very noisy environment, and the digital switch-

ing noise coupled through power supply and substrate induces considerable

noise into noise-sensitive analog circuits and results in the PLL output with

high jitter. [40]. To improve the jitter performance of the PLLs, a narrow

bandwidth was selected or a low-gain VCO was used. However, these ap-

proaches often result in long lock-in time and increasing design complexity of

the PLLs.

Recently, all-digital PLLs have become more suitable because they yield

better testability, programmability, stability, and portability over different pro-

cesses [40]. Instead of using VCO, the all-digital PLLs use digitally-controlled

oscillator (DCO) with fine-tuning capabilities. If the partitioning between

analog blocks and digital blocks is planned well, a closed-loop PLL model can

be implemented efficiently and enhance the flexibility and compatibility for

better verification. Figure 8.10 shows the block diagram of DCO-based PLL

design. In this design case, digital control logic requires accurate digital out-

puts from analog-to-digital converter (ADC) in analog blocks and generates

corresponding coarse tune and fine tune as inputs to DCO. By virtue of these

detailed modeling, each analog block is modeled at its boundary and fully

closed-loop signal propagation is implemented. For this better modeling of

the PLL, well-partitioned PLL design is provided by the analog designer of

102

the PLL.

Charge	
Pump	

Phase/	
Frequency	
Detector	

Digital	
Logic	 ADC	

Reference	
Clock	

PLL	
Clocks	

Control	
Logic	

DCO	
Tune	
Control	
Logic	

PLL	
output	
control	
logic	

Analog	 Blocks	

Control	
Signals	

FSM	

Figure 8.10: DCO-based PLL : open-loop PLL model

PFD outputs

CP output

Tune values

DCO period

ADC outputs

Figure 8.11: PLL waveform from analog blocks

All four analog blocks in Figure 8.10 are modeled with the behavior of

each analog block, and the communicated signals between the charge pump

103

and the ADC are modeled as real numbers, which represent analog signals. All

other signals between the analog blocks are modeled as digital signals and this

closed-loop model provides quick lock-in time and accurate full functionality

of the PLL.

A PLL locking simulation by the analog model of the PLL is performed.

Figure 8.11 shows simulation waveform of the signals between analog blocks in

Figure 8.10. For performance analysis of the analog blocks in the PLL, a full

SPICE simulation for whole PLL design might not be feasible to be completed

in reasonable time. When the SPICE simulation for the whole PLL with

many different programmed configurations, it takes few hours to few days.

In this design case, the PLL has well-partitioned fully hierarchical model.

The analog model of the PLL enables a mixed-simulation with the model and

design. The performance of each analog block can be assessed by placing actual

schematic design for the target analog block and analog models for the rest

of the design. This mixed simulation method provides faster simulation time

with enough accuracy. The reduction of simulation time varies by the design

size of the focused analog block, but it fairly reduced down the simulation

time by 10 times or 100 times. The quality of the analog model of the focused

block can be compared with the scaled-down SPICE simulation result and

the quality of the model can be enhanced. Eventually, the mixed-simulation

elevates both the quality of the model and accuracy of the design. Hence, the

analog model is beneficial to both compatible integration and flexible analog

design verification.

104

Chapter 9

Conclusion

This dissertation has presented several cost-effective production test so-

lutions and mixed-signal design verification driven by analog behavioral mod-

eling. Although the latest system-on-chip (SOC) is getting denser, faster, and

more complex, the manufacturing technology is dominated by more subtle de-

fects introduced by smaller scale technology and requires more mature testing

strategies. By performing various different types of tests, better quality SoC

can be manufactured, but test resources are too limited to accommodate all

the required tests. To create the most efficient production test flow, any redun-

dant or non-effective tests are removed or minimized. Testing of mixed-signal

cores is becoming harder as their features and capabilities has grown and their

scale is getting bigger. Before the testing phase of the design, better design

verification can be enabled for mixed-signal cores by achieving comprehensive

behavioral modeling.

Chapter 3 has proposed new method of test data volume reduction

by combining the nonlinear property of feedback shift register (FSR) and

dictionary coding. Instead of using the nonlinear FSR for actual hardware

implementation, the expanded test set by nonlinear expansion is used as the

105

one-column test sets and provides big reduction ratio for the test data volume.

The experimental results shows the combined method reduced the total test

data volume and increased the fault coverage. Due to the increased number

of test patterns, total test time is increased.

Chapter 4 has addressed a whole process of functional fault grading.

Structural tests are widely used to cover the stuck-at and transition delay

faults (TDFs) on the circuit under test (CUT), but for highly complex designs,

deeply embedded logic may not be covered by the automatically generated

tests. In particular, functional tests can be used to target critical functions and

paths, but these functional tests require a big effort to generate and consume

a lot of test time and test memory. By keeping the most critical functional

tests, the remaining functional tests can be skipped if the test quality of each

functional test can be assessed. Simulation-based functional fault grading is

performed to identify the quality of the given functional tests against static

faults and TDFs. With structural tests and functional tests, functional fault

grading can indicate the way to achieve the same test coverage by spending

minimal test time. For the final production testing, a confident decision on the

functional test selection can be performed based on the fault grading results.

Fault grading has always been a ”desire-to-have” flow because it can bring up

significant value for cost saving and yield analysis. However, it is very hard

to perform the fault grading on the complex large scale SOC. A commercial

tool called Z01X was used, but overall fault grading planning was organized

and detailed execution was performed. Compared to the consumed time and

106

resource for fault grading, the contribution to the test time saving might not

be acceptable as promising, but those fault grading data can be reused for

yield analysis and test flow optimization.

Chapter 5 has addressed the challenges of package-on-package (POP)

testing. Because POP devices have pins on both the top and the bottom of the

package, the increased test pins require more test channels to detect packaging

defects. Boundary scan chains are used to detect those continuity defects by

relying on leakage current from the power supply. This proposed test scheme

does not require direct test channels on the top pins. Based on the counting

algorithm, minimal numbers of test cycles are generated, and the test achieved

full test coverage for any combinations of pin-to-pin short defects on the top

pins of the POP package. Also, it can be expanded to multi-site testing with

fewer test channels for high-volume production. Boundary scan chains are

given to most modern designs. Key point of this chapter is to maximize the

usage of the boundary scan chains in the SOC, and the testing of top pins

on POP devices has been achieved by sensing leakage current by scanning in

minimum sets of stimulus patterns.

In Chapter 6, fault grading is applied within different structural test

categories. Stuck-at faults can be considered as TDFs having infinite delay.

Hence, the TDF ATPG tests can detect both TDFs and stuck-at faults. By

removing the stuck-at faults detected by the TDF tests, the total test time for

stuck-at faults is reduced, and the reduced stuck-at faults test set resulted in

smaller number of stuck-at ATPG patterns. This TDF grading was performed

107

in the same ATPG tool that was used to generate the stuck-at and TDF ATPG

tests. Without using other commercial tools for fault grading, the methodology

proposed in this chapter was able to remove redundant test patterns and test

time. By the proposed TDF grading, the reduced patter sets are generated

while achieving the same test coverage.

In Chapter 7 and 8, the strategies and methodologies of analog behav-

ioral modeling are addressed, and actual mixed-signal verification cases are

presented. Recent complex SOC design includes various mixed-signal cores to

implement highly complicated features to meet the needs of the latest mobile

devices. Analog behavioral modeling enables wider scope of verification for

the SOC having better quality. In the meantime, the modeling process reveals

any potential design errors or incorrect test bench setup, and minimizes un-

necessary debugging time with silicon triggered by the uncovered problems in

analog cores. From the actual cases from digital-to-analog converter (DAC)

and phase-locked loop (PLL), successful verification results are presented.

The calibration verification of DAC requires full design scale of digital

finite state machine design and detailed representation of analog blocks. Fully

hierarchical model for the DAC has proven quick simulation verification, and

the actual calibration algorithm was verified through the modeling of silicon

mismatches. The simulation by analog model is more than 100 times faster

than SPICE simulation. This model-based verification can be used to verify

the calibration algorithm in the early design stage for architectural phase and

minimize unnecessary engineering time to identify escaped issues in the actual

108

design implementation.

Two different types of PLL model has been presented. Quick bring-up

of open-loop PLL model has provided low simulation overhead for widely used

PLLs in the SOC and enables early starting of design verification for the upper-

level design using the PLL generated clocks. Accurate closed-loop PLL model

had been achieved by DCO-based PLL design and sophisticated partitioning

of digital and analog logics in the PLL design. By virtue of properly identified

modeling boundary, the simulation overhead of the closed-loop model was not

big enough to impact the SOC-level simulation and the mixed simulation with

analog models and schematic designs enables both prompt verification and

flexible performance analysis.

This dissertation contributes to reduce test time and to enhance test

quality and helps to set up efficient production testing flow. Depending on

the size and performance of the device, properly used testing schemes can

maximize the efficiency of the production testing. The topics covered in this

dissertation can be used in optimizing the test flow and making the list of

final production tests that will achieve maximum test capability. Also, wider

and better mixed-signal verification enabled by analog behavioral modeling

elevates the quality of the device, and minimizes expensive engineering time

caused by the errors in the device found too late in the development stage.

109

Bibliography

[1] W. Daehn and J. Mucha, “Hardware test pattern generation for built-in

testing,” in Proceedings of the IEEE International Test Conference, 1981,

pp. 110 – 113.

[2] J. Chen, M. Henrie, M. F. Mar, and M. Nizic, Mixed-signal Methodology

Guide, B. Bailey, Ed. San Jose: Cadence, 2012.

[3] M. L. Bushnell and V. D. Agrawal, Essentials of electronic testing for

digital, memory and mixed-signal VLSI circuits. Boston: Kluwer, 2000.

[4] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architec-

tures: Design for Testability. San Francisco: Morgan Kaufmann, 2006.

[5] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for combi-

national circuirs,” IEEE Transactions on CAD of Integrated Circuits and

Systems, vol. 19, no. 8, August 2000, pp. 957 - 963.

[6] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector compres-

sion/decompression using statistical coding,” in Proceedings of the IEEE

VLSI Test Symposium, 1999, pp. 114 – 120.

[7] R. W. Basset, B. J. Butkus, S. L. Dingle, M. R. Faucher, P. S. Gillis,

J. H. Panner, J. G. Petrovick, and D. L. Wheater, “Low-cost testing of

110

high-density logic components,” in Proceedings of the IEEE International

Test Conference, 1989, pp. 550–557.

[8] ——, “Low-cost testing of high-density logic components,” in IEEE De-

sign & Test of Computers, vol. 7, no. 2, 1990, pp. 15–28.

[9] H. Vranken, T. Waayers, H. Fleury, and D. Lelouvier, “Enhanced reduced

pin-count test for full scan design,” in Proceedings of the IEEE Interna-

tional Test Conference, 2001, pp. 738 – 747.

[10] H. Kaeslin, Digital Integrated Circuit Design: From VLSI Architectures

to CMOS Fabrication. Cambridge: Cambridge University Press, 2008.

[11] M. Cotorogea, “Using analog behavioral modeling in pspice for the imple-

mentation of subcircuit-models of power devices,” in IEEE International

Power Electronics Congress, 1998, pp. 158–163.

[12] X.-D. Tan and C.-J. Shi, “Parametric analog behavioral modeling based

on cancellation-free ddds,” in IEEE International Workshops on Behav-

ioral Modeling and Simulation, 2002, pp. 25–31.

[13] H. Li, M. Mansour, S. Maturi, and L.-C. Wang, “Analog behavioral mod-

eling flow using statistical learning method,” in 11th International Sym-

posium on Quality Electronic Design (ISQED), 2010, pp. 872–878.

[14] I.-S. Lee, J. H. Jeong, and A. P. Ambler, “Using the nonliear property of

FSR and dictionary coding for reduction of test volume,” in Proceedings

of the IEEE Symposium on VLSI, 2005, pp. 194 – 199.

111

[15] L. Li and K. Chakrabarty, “Test data compression using dictionaries with

fixed-length indices,” in Proceedings of the IEEE VLSI Test Symposium,

2003, pp. 219 – 224.

[16] X. Sun, L. Kinney, and B. Vinnakota, “Combining dictionary coding and

LFSR reseeding for test data compression,” in Proceedings of the IEEE

Design and Automation Conference, 2004, pp. 944 – 947.

[17] A. Chandra and K. Chakrabarty, “Reduction of SOC test data volume,

scan power and testing time using alternating run-length codes,” in Pro-

ceedings of the IEEE Design and Automation Conference, 2002, pp. 673

– 678.

[18] C. V. Krishna, A. Jas, and N. A. Touba, “Test vector encoding using

partial LFSR reseeding,” in Proceedings of the IEEE International Test

Conference, 2001, pp. 885 – 893.

[19] A. A. Al-yamani, S. Mitra, and E. J. McCluskey, “BIST reseeding with

very few seeds,” in Proceedings of the IEEE VLSI Test Symposium, 2003,

pp. 69 – 74.

[20] K.-T. Cheng, S.-Y. Huang, and W.-J. Dai, “Fault emulation: A new

methodology for fault grading,” IEEE Transactions on CAD of Integrated

Circuits and Systems, vol. 18, 1999, pp 1487-1495.

[21] WinterLogic, WinterLogic Z01X Manual. WinterLogic, 2007.

[22] Synopsys, Synopsys Tetramax Manual. Synopsys, 2011.

112

[23] E. M. Rudnick, T. M. Niermann, and J. H. Patel, “Methods for reduc-

ing events in sequential circuit fault simulation,” in Proceedings of the

IEEE/ACM International Conference on Computer-Aided Design, 1991,

pp. 546–549.

[24] M. S. Hsiao and J. H. Patel, “A new architectural-level fault simulation

using propagation prediction of grouped fault-effects,” in Proceedings of

the IEEE International Conference on Computer Design, 1995, pp. 628–

635.

[25] Y. E. Osais and A. H. El-Muleh, “A static test compaction technique

for combinational circuits based on independent fault clustering,” in Pro-

ceedings of the International Conference on Electronics, Circuits, and Sys-

tems, 2003, pp. 1316–1319.

[26] P. Sun, V. C. K. Leung, D. Yang, and D. X. Q. Shi, “Development of a

novel cost-effective package-on-package (pop) solution,” in Proceedings of

the International Conference on Electronic Packaging Technology & High

Density Packaging, 2009, pp. 46–51.

[27] N. Ahmed and M. Tehranipoor, “Improving transtion delay fault coverage

using hybrid scan-based tech,” in Proceedings of the IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, 2005, pp.

187–195.

[28] M. M. V. Kumar, S. Tragoudas, S. Chakravarty, and R. Jayabharathi,

113

“Exact at-speed delay fault grading in sequential circuits,” in Proceedings

of the IEEE International Test Conference, 2006, pp. 1–10.

[29] L.-T. Wang, C. E. Stroud, and N. A. Touba, System on Chip Test Ar-

chitectures: Nanometer Design for Testability. San Francisco: Morgan

Kaufmann, 2007.

[30] I. Pomeranz and S. M. Reddy, “Transition path delay faults: A new path

delay fault model for small and large delay defects,” IEEE Transactions

on VLSI Systems, vol. 16, pp. 98–107, 2008.

[31] C. E. Cummings, “Verilog nonblocking assignments demystified,” in Pro-

ceedings of Verilog HDL Conference and VHDL International Users, 1998,

pp. 67–69.

[32] ——, “Correct methods for adding delay to Verilog behavioral models,” in

Proceedings of Verilog HDL Conference and VHDL International Users,

1999, pp. 1–8.

[33] S. Joeres and S. Heinen, “Functional verification of radio frequency socs

using mixed-mode and mixed-domain simulations,” in IEEE International

Workshop on Behavioral Modeling and Simulation, September 2006, pp.

144–149.

[34] B. Foret, L. Rolindez, C. Adobati, and S. Engels, “Unified environment

for mixed signal top-level soc verification,” in IEEE Journal of Solid-state

Circuits, vol. 42, no. 5, May 2007, pp. 992–1002.

114

[35] G. Bonfini, M. Chiavacci, R. Mariani, and E. Pescari, “A mixed-signal

verification kit for verification of analogue-digital circuits,” in IEEE De-

sign Automation and Test in Europe, Munich, Germany, March 2006, pp.

88–93.

[36] V. Sharma, G. Lakshmanan, S. Tare, and S. Dhamankar, “Predicting

the correlation between analog behavioral models and SPICE circuits for

robust SOC verification,” in IEEE International Behavioral Modeling and

Simulation Workshop, 2008, pp. 130–135.

[37] K. Kundert and H. Chang, “Verification of complex analog integrated cir-

cuits,” in IEEE Custom Integrated Circuits Conference, September 2006,

pp. 177–184.

[38] B. Razavi, Design of Analog CMOS Integrated Circuits. New York:

McGraw-Hill, 2001.

[39] J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, “An all-digital

phase-locked loop with 50-cycle lock time suitable for high-performance

microprocessors,” IEEE Journal of Solid-State Circuits, vol. 30, pp. 412–

422, April 1995.

[40] C.-C. Chung and C.-Y. Lee, “An all-digital phase-locked loop for high-

speed clock generation,” IEEE Journal of Solid-State Circuits, vol. 38,

pp. 347–351, February 2003.

115

