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Subsurface Radioactive Gas Transport and Release Studies using the 

UTEX Model 

 

Justin David Lowrey, Ph.D. 

The University of Texas at Austin, 2013 

 

Supervisor:  Steven Biegalski 

 

Underground nuclear explosions (UNEs) produce anthropogenic isotopes that 

provide the only definitive means by which to determine whether a nuclear explosion has 

taken place. Verification of a suspected test under the Comprehensive Nuclear-Test-Ban 

Treaty (CTBT) includes both on-site and atmospheric sampling of specific noble gas 

radioisotopes for analysis of origin. It is well-established that the processes of subsurface 

transport can affect the rate at which such gases will reach the surface. However, the 

relative abundance of anthropogenic isotopes reaching the surface following transport is 

currently assumed to rely solely on their direct fission yield, decay rate, and their 

production from precursor decay, making no account for the influence of transport 

processes on isotopic ratios.  

The Underground Transport of Environmental Xenon (UTEX) model has been 

developed to examine the possible effects of subsurface transport on radioxenon isotopic 

ratios as well as to consider a number of on-site inspection-related applications. In this 

work, background on the UTEX model’s development, evolution and vetting is 

presented. This is followed by the characterization and analysis of a number of 

applications of the model for consideration of CTBT-relevant scenarios. Specifically, the 

UTEX model’s capability to analyze CTBT on-site inspection concept of operations is 



 viii

demonstrated. This is accomplished through an examination of generalized UNE source 

terms, geological stratigraphy, UNE impact on local geology, natural soil-gas 

radionuclide backgrounds, atmospheric infiltration, and sampling methodology. It is 

shown that the processes driving noble gas transport through geological media can 

significantly skew the ratios of key radioxenon isotopes that are used to help verify 

whether or not a well-contained underground test has taken place. This result emphasizes 

the need for a broader understanding of radionuclide signatures used for CTBT 

verification purposes and the mechanisms that can alter them. 
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Chapter 1. Introduction 

1.1  MOTIVATION 

Since the signing of the Limited Test Ban Treaty in 1963, a majority of nuclear 

explosion tests have been carried out in underground facilities intended to contain the 

fission products that result, therefore minimizing evidence of the explosions. Three 

decades later in September 1996, the Comprehensive Nuclear-Test-Ban Treaty (CTBT), 

an international resolution banning any and all nuclear explosions, was opened for 

signatures; to date the treaty has been signed by 183 countries and ratified by 159 

countries (CTBTO Prepatory Commission, 2013). Implicit in the CTBT is the need for a 

cooperative, global capacity to reliably detect and verify underground nuclear explosions.  

Underground nuclear tests produce anthropogenic radioactive isotopes that 

provide the only definitive means by which to determine whether a nuclear explosion has 

taken place. In an underground nuclear explosion (UNE), these radionuclide fission and 

soil-activation products are directly injected into the surrounding geologic media. What 

results is a distribution of radionuclides within the geology hundreds of meters below the 

surface known as the initial contaminant distribution halo. Vertical transport by a number 

of mechanisms inevitably brings some amount of this contaminant to the surface and into 

the atmosphere where it can be detected by specific atmospheric monitoring stations. 

Verification of a suspected test under the CTBT includes both onsite and atmospheric 

sampling of specific noble gas radioisotopes for analysis of origin signature (CTBTO 

Preparatory Commission, 1996; Hannon, 1985). 

The International Monitoring System (IMS) is a 321-station network spread out 

around the globe (see Figure 1.1), consisting of seismic, infrasound, hydroacoustic, as 

well as radionuclide monitoring technologies (CTBTO Prepatory Commission, 2010). 
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Along with established lines of international consultation, clarification and on-site 

inspections, the IMS is a major component in the CTBT verification system. Of the 321 

stations in the IMS network, 80 serve to monitor radionuclides in the atmosphere 

(CTBTO Prepatory Commission, 2010). These stations are generally located strategically 

in areas of rapid wind mixing to facilitate a high volume air sampler, which filters and 

collects radioactive particulates. These filters are subsequently counted with gamma ray 

detectors to determine activity levels of various radionuclides that might be present. 

Monitoring of radionuclide levels in the atmosphere faces a number of challenges. 

First and foremost, clandestine nuclear explosions are assumedly conducted with the 

intent of containing as much of the explosion evidence as possible to prohibit detection. 

Accordingly, in an effort to increase radionuclide detection efficiency and reliability, the 

International Noble Gas Experiment (INGE), started in 1999, developed and deployed at 

IMS stations four different types of xenon detectors (CTBTO Prepatory Commission, 

2010). Xenon isotopes, as noble gas fission products, are of special interest in 

atmospheric monitoring for underground nuclear activity because of their short half-lives, 

relatively high production yields, and ability to move through geological structures 

 

Figure 1.1 Global distribution of IMS stations. 
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without reacting (T. W. Bowyer et al., 2011; T. W. Bowyer et al., 2002; Carman et al., 

2003; Saey, 2009; Van der Stricht & Janssens, 2001). Xenon is present naturally in the 

atmosphere at a level of 0.087±0.001 parts per million with the natural isotopic 

abundances listed in Table 1.1 (Hwang et al., 2005). 

Radioactive isotopes of xenon in the atmosphere, however, are largely 

anthropogenic in origin (Biegalski et al., 1999; Bowyer et al., 1999). So-called 

radioxenon is primarily produced as release from the commercial nuclear power industry 

as well as in the medical industry, but radioxenon is also released in nuclear explosions. 

This leads to a second major challenge to atmospheric monitoring of radionuclides – 

generally speaking nuclear explosions are far from the only source of radionuclide 

production in the modern world, thus identifying a particular radioisotope signal as 

emanating from a nuclear explosion is not trivial. Peaceful nuclear applications, such as 

for power generation and medical isotope production, have associated with them their 

own radionuclide signatures that can potentially serve to mimic or obscure more 

concerning signs of weapons applications; medical isotope production facility signatures 

can be especially difficult to distinguish from those of nuclear explosions. As such, not 

just the activity levels of radionuclides in the atmosphere, but their isotopic ratios are of 

Table 1.1 Natural abundance of Xenon Isotopes 

Xe 
Isotope 

Natural 
Abundance 

124Xe 0.095% 
126Xe 0.089% 
128Xe 1.91% 
129Xe 26.4% 
130Xe 4.07% 
131Xe 21.2% 
132Xe 26.9% 
134Xe 10.4% 
136Xe 8.86% 
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central importance to atmospheric monitoring and distinguishing sources of nuclear 

explosions from other anthropogenic sources.    

A major objective of IMS atmospheric monitoring is to observe radioxenon 

signals and examine the ratios of four xenon isotopes, 135Xe, 133Xe, 133mXe and 131mXe for 

comparison with expected values for nuclear explosion sources. On October 3, 2006, the 

Democratic People’s Republic of Korea gave warning of its intention to conduct a 

nuclear test, and six days later claimed that one had been successfully carried out.  

Anthropogenic xenon isotopes were the only fission products to be measured off-site 

afterwards and served as critical evidence that a nuclear explosion had taken place 

(Ringbom et al., 2009). Being able to predict the isotopic ratio signatures produced by 

underground nuclear explosions is therefore crucial to the effectiveness of atmospheric 

monitoring of radionuclides (Carrigan et al., 1996; Hannon, 1985; Zuckerman, 1993).  

On-site inspections (OSI) make up another component of the CTBT verification 

regime. The CTBT provides for an OSI of suspected nuclear activity locations at the 

request of a member state. Within 96 hours of an inspection request, member countries 

are required to vote on the request, and the OSI will only be allowed to proceed upon an 

affirmative vote of 30 or more member countries out of the 51 member states. An OSI is 

limited to searching an area no greater than 1,000 square kilometers, and the country in 

question can exclude certain locations within the designated area as restricted areas (RA) 

(CTBTO Preparatory Commission, 1996).   

Various technologies are set to be used in an OSI, including radionuclide 

monitoring techniques. Just as in IMS atmospheric monitoring for airborne contaminant 

traces, radionuclide rates of decay and environmental mobility are key to their detection 

by an OSI effort (see Figure 1.2). However, as it is estimated that an OSI team could not 

likely reach field locations before about 10 days following a suspected UNE event, the 
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nature of radionuclide releases relevant to IMS detection and OSI detection are likely 

somewhat different. Detection by the IMS would require a very significant release or 

venting of radionuclides from a UNE to overcome both radioactive decay and 

atmospheric dilution before its being measured. An OSI measurement of radionuclide 

evidence from a UNE would likely come in a period of two weeks or more following the 

suspected event, and would more likely be the result of a much slower seepage of 

contaminant (Carrigan & Sun, 2012).  

A list of radionuclides of potential OSI interest is shown in Table 1.2. 

Radionuclides with half-lives under 9 hours are excluded from consideration due to the 

unlikelihood that they would exist in detectable quantities in the time frame of potential 

OSI detection. Of the nuclides listed, radioargon isotopes are the only non-fission 

products. Within a UNE, radioargon can be expected to be produced through the neutron 

 

Figure 1.2 Estimated radioxenon and radioargon activity windows at the surface 
following a UNE event, (Carrigan, 2009). 
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activation of the natural soil and rock environment. With a substantially longer half-life 

than radioxenon and similar environmental mobility, 37Ar in particular is regarded as a 

significant candidate for OSI detection (Haas et al., 2010; Purtschert et al., 2007).  

 

 

 

Table 1.2 Noble gas and volatile radionuclides with potential interest for OSI inspections 

Isotope Half-Life Production and delectability notes 
125Xe 16.9 hours Primarily created through 124Xe(n,γ) 125Xe reaction. 
127Xe 36.4 days Primarily created through 126Xe(n,γ) 127Xe reaction. 

129mXe 8.9 days Primarily created through 128Xe(n,γ) 129mXe reaction. 
131mXe 11.9 days Longest lived radioxenon with good fission yield. 
133mXe 2.2 days  

133Xe 5.2 days  
135Xe 9.1 hours  

85Kr 3934.4 days 
Hard to detect via classic gamma-ray spectroscopy.  
Documented  environmental background. 

37Ar 35.0 days 
Produced primarily through 40Ca(n,α)47Ar with secondary 
production through 36Ar(n,γ) 37Ar reaction. 

39Ar 269 years 
Produced primarily through 38Ar(n,γ) 39Ar with secondary 
production through 42Ca(n,α)49Ar reaction. 

42Ar 32.9 years 
Produced from double neutron capture 40Ar(n,γ) 
41Ar(n,γ)42Ar with secondary production from 44Ca(n,γ)45Ca 
(n,α)42Ar.  Low anticipated production. 

129I 1.57E7 years 
Hard to detect through classical gamma-ray spectroscopy.  
Low specific activity. 

131I 8.0 days Decays to 131mXe and 131 Xe (stable). 
133I 20.8 hours Decays to 133mXe and 133 Xe (stable). 

134Cs 2.1 years Shielded radionuclide (no radioactive parent). 
136Cs 13.2 d Shielded radionuclide (no radioactive parent). 

137Cs 30.1 years 
High environmental background due to past fallout and 
reactor accidents. 
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Currently, the bulk of the knowledge and methods used to predict UNE 

radioxenon signatures have focused on simply modeling the production source. Largely 

neglected in these calculations are the effects of chemical and isotopic mixing that occur 

as a result of environmental transport of radioxenon and its parent radionuclides. As 

compared its origin signature hundreds of meters beneath the surface, this mixing can 

significantly alter the isotopic ratios before radioxenon reaches the surface and 

atmosphere. Given that atmospheric monitoring and OSI sampling for radionuclides are 

the only real means by which a nuclear explosion can be positively verified, a greater 

understanding of the various physical phenomena responsible for subsurface radionuclide 

transport is essential. 

 

1.2 NPE GAS TRACER EXPERIMENT 

1.2.1 The Experiment 

Following the signing of the CTBT in 1996, the Comprehensive Test Ban Treaty 

Research program was initiated for the purpose of researching technologies of potential 

use for OSI. Within this, the Lawrence Livermore National Laboratory On-Site 

Inspection project considered four technologies that were considered particularly 

promising for use in an OSI, yet insufficiently developed. One such technology 

considered was noble gas transport modeling and sampling, carried out as part of the 

Non-Proliferation Experiment (Carrigan et al., 1997). 

The Non-Proliferation Experiment (NPE), conducted by Lawrence Livermore 

National Laboratory (LLNL), entailed the September 22, 1993 detonation of a one-

kiloton chemical explosion within Rainier Mesa at the Nevada Test Site. Situated at a 

depth of about 400 m below the surface, the NPE afforded a unique opportunity to 
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simulate the release and subsequent transport of radionuclides from a nuclear event. As a 

whole, the NPE consisted of a broad range of goals. First, on-site, pre-shot, shot-time, 

and post-shot measurements of gas seepage and seismic activity were taken to mimic 

challenge OSI scenarios. Second, there was the objective of comparing the underground 

chemical explosion with the measurements of nearby nuclear test explosions within the 

same geologic medium. Lastly were a number of scientific objectives regarding the 

structure of the regional crust and upper mantle, examined by seismic stations located 

across the region (Denny, 1994). The specific aim of the LLNL OSI project was to 

determine whether a well-contained underground explosion could be detected by gas 

sampling along nearby geologic faults, and if so, to define a basis for predicting the 

detectability of quickly decaying radionuclides that could be positively linked to fission 

products from a nuclear detonation (Carrigan, et al.,1997).  

The setup of the NPE was as follows: approximately 1.29 kg of ANFO1 blasting 

agent was placed within a 15.2 m diameter, 5.5 m tall cylindrical cavity. Within the 

cavity two samples of tracer gas, 8 m3 of SF6 and 1.3 m3 of 3He were placed. Sulfur 

hexafluoride, SF6, is a relatively inert compound of high molecular weight (146), good 

thermal stability, and was detected at background levels of only 3 ppt (parts-per-trillion 

by volume) at the test site. 3He similarly existed at very low background levels, only 7.34 

ppt. To detect the concentration of SF6 in gas samples, chromatography was used, while 

mass spectrometry was used to determine 3He concentrations. 

                                                 
 
1 AN/FO, ammonium nitrate/fuel oil; by far the most common type of explosive utilized in North America 
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Over a roughly 500-day period following the detonation, 200 gas samples were 

collected in the region and analyzed for traces of the gases. Figure 1.3 shows an overview 

of the NPE site at Rainier Mesa (Denny, 1994). A NOAA2 weather station located at an 

elevation of 2286m on Rainier Mesa recorded barometric readings throughout the 

duration of the experiment. Sampling sites as indicated in Figure 1.3 can be broadly 

categorized as either being located on pre-existing fault lines or near the point of 

detonation. Fault line stations were sampled most often, but during “barometric events,” 

additional surface samples were collected at stations near the detonation point. It would 
                                                 
 
2 National Oceanic and Atmospheric Administration, United States Department of Commerce 

 

Figure 1.3 Surface distribution of soil gas sampling stations. Stations denoted ‘OS’ and 
‘DP’ are located on pre-existing faults or fissures. Note also that Hunter’s 
Trophy is the site of a previously conducted underground nuclear explosion 
(Carrigan et al., 1997; Denny, 1994). 
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turn out that only one ground zero gas sample ever recorded a SF6 concentration above 

background. Due to heavy snows, the majority of samples were collected during the fall 

and spring following the detonation, particularly during periods of deep barometric 

depressions (Carrigan et al., 1997).  

1.2.2 NPE Results 

Table 1.3 summarizes the gas sampling observations (Carrigan et al., 1997). Over 

a period of 508 days, thirteen samples were identified as positive for SF6, the first of 

which came 50 days following the detonation at the site OS-6. Like all but one of the 

locations of positive samples, this station site is located on a pre-existing fault several 

hundred meters from the point of detonation, near to the site of a previously conducted 

underground nuclear explosion called Hunter’s Trophy. This initial positive sample 

followed a number of large barometric depressions. Of particular interest is that while 

SF6 was subsequently detected well above background in a few other sample suites, no 

amounts were seen in many additional sample suites, as indicated by the “no detects” in 

Table 1.3. 3He was not detected significantly above background levels until day 375 

following the detonation, 325 days following the initial detection of SF6.  

An important goal of the LLNL OSI project team was to develop a basis for 

future prediction of the detectability of rapidly decaying radionuclides unambiguously 

emanating from nuclear detonations. To this end, a numerical model of tracer transport 

was developed with two broad points in mind, both of which were strongly supported by 

the results of the NPE. First, the fact that all but one positive sample came at stations 

located near pre-existing faults considerable distances from the detonation point lends 

support to the theory that fractures within an otherwise homogeneous geologic media 

(matrix) provide “fast tracks” for the migration of contaminants to the surface. The study 
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of continuous and networked fractures and their role as effective contaminant transport 

was undertaken in the 1970’s by a handful of groups including Wilson & Witherspoon 

(1970), Nelson & Handin (1977), and Gale (1979). A second key element of the NPE 

migration study was the magnitude of the effect of variations in surface pressure on 

bringing a tracer contaminant to the surface, a process termed barometric pumping first 

modeled as a source of tracer transport by Nilson & Lie (1990), which will be described 

in greater detail in the following section and chapter. While large barometric depressions 

tended to precede the positive sample results in the NPE, smaller amplitude, higher 

frequency barometric variations seemed to have little effect on the detection of trace gas.  

 

Table 1.3 Summary of Rainier Mesa Gas Sampling Observations from the NPE (Carrigan 
et al., 1997). 

Sample 
Suite 

Date No. Sites 
F=fracture 

S=soil 

Total Detects
(Total 

Samples) 

Locations of 
SF6 

Detection 

SF6 Conc., 
ppt 

Locations of 
3He 

Detection 

3He Conc., 
ppt 

Barometric 
Pressure 
(mbar) 

1 08-Jul-93 3F 0 (3)  ND  - 772.1 
2 11-Aug-93 3F 0 (5)  ND  ND 775.2 
3 09-Sep-93 3F 0 (6)  ND  ND 777.6 
4 22-Sep-93 Tunnel Port 0 (2)  ND  ND 772.5 
5 24-Sep-93 3F 0 (3)  ND  - 778.2 
6 10-Nov-93 3F 0 (6) OS-6 340  ND 764.8 
7 17-Mar-94 3F 1 (7) OS-1 540  ND 771.2 
  3F  OS-6 580    
  3F  OS-6 280    

8 23-Mar-94 3F 1 (6) OS-1 580  ND 765.3 
  3F  OS-2 450    
  3F  OS-3 400    

9 17-May-94 2F 3 (2)  ND  - 765.2 
10 19-May-94 3F 0 (3)  -  ND 770.7 
11 11-Aug-94 1F 0 (1)  ND  - 779.1 
12 29-Sep-94 5F 0 (9)  ND  ND 771.6 
13 04-Oct-94 1F 0 (11)  ND  ND 766.6 
14 06-Oct-94 5F 2 (11) OS-1 13 OS-6 8.42 771.2 
15 12-Oct-94 5F 1 (12) OS-3 18  ND 769.8 
16 02-Nov-94 6F 3 (15) DP-1 45 DP-1 9.22 760.9 

  6F  OS-6 45    
17 03-Nov-94 8F 0 (15)  ND  ND 764.5 
18 10-Nov-94 13S 3 (41) DP-1 18 DP-1 21.4 760.8 

  6F  TP-4 9    
19 16-Nov-94 18S, 8F 1 (40)  ND DP-1 14.7 762.8 
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1.3 BAROMETRIC PUMPING 

Binary gas diffusion has long been known to be too slow to account for the 

transport of detectable concentrations of rapidly decaying radionuclides from hundreds of 

meters underground to the surface. Two well-considered examples are 37Ar and 133Xe, 

radionuclides of particular interest in atmospheric monitoring having short half-lives of 

34.8 days and 5.2 days, respectively. Additionally, long term, highly pressurized 

subsurface sources are ineffective in pushing gases to the surface – gas flow in this 

scenario is typically largely horizontal due to the anisotropic permeability of geologic 

layers (Carrigan et al., 1997). Alternatively, as demonstrated in the results of the NPE, a 

deep, extended drop in surface pressure can be very effective in the transport of 

subsurface gas to the surface. 

The concept of barometric pumping is simple. Consider a concentration of trace 

gas located deep beneath the surface within the rock matrix. During periods when the 

barometric pressure falls below the ambient pressure of the formation, tracer gas within 

fractures is pulled upwards. The flow is complicated by the fact that, as the gas travels 

along the fracture it also has the opportunity to diffuse horizontally back into the higher 

levels of rock matrix. As a result, the concentration of a trace gas moving along a fracture 

toward the surface during a pressure low will tend to decrease. When the barometric 

pressure rises higher than the pressure in the formation, gas within the fractures is pushed 

back downwards, and again the tracer gas escapes into rock matrix through the porous 

fracture walls. On the next cycle, decreasing pressure again pulls trace gas from the 

matrix upwards through the fractures. The effect of fracture-matrix diffusion in these 

cycles is that low/high pressure cycles are not completely reversible – even if pressure 

variations are perfectly sinusoidal, there is a net upward “ratcheting” of the tracer 

concentration front. 
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Models, both numerical and analytical, of subsurface gas transport have been 

explored well before the NPE-migration model reported on by the LLNL team. Of 

particular relevance to this thesis are two works by Grisak & Pickens (1980) and Tang et 

al. (1981), which demonstrated the role of fracture-matrix interactions in controlling the 

rate of contaminant migration in hydrological applications. In the former study, a finite 

element model was developed for solute transport by advection3, mechanical dispersion, 

and diffusion in single-direction flow field. Similarly, the later study considered an 

analytical solution to tracer transport within a fracture surrounded by saturated porous 

rock. Additionally, however, the Tang study considered molecular diffusion both along 

the fracture axis as well as into the surrounding matrix, adsorption4 in the matrix, and 

lastly radioactive decay. In 1984, Neretnieks and Rasmuson developed an integrated 

finite difference scheme to model radionuclide migration that examined variation in both 

fracture cross section and fluid velocity, which ultimately demonstrated how simplified 

models of 1D transport could be extended to more complex configurations.  

The first actual trace gas vertical transport model based on barometric pumping as 

the primary transport mechanism was developed by Nilson and Lie (1990). This finite 

difference based numerical model considers a double-porosity formulation5 in which 

fractures are the dominant pathways by which contaminants migrate, and fracture-matrix 

interactions play a critical role in determining the rate of migration. Finally and 

somewhat more recently, the Non-isothermal Unsaturated-Saturated Flow Transport 

(NUFT) model was developed by Nitao (1996) and utilized in the NPE-migration model 

                                                 
 
3 Advection refers to transport of a substance due to the bulk motion of a fluid. 
4 Adsorption refers to the adhesion of atoms or molecules to a surface, as opposed to  absorption within a 
permeable liquid or solid  
5 Double-porosity models of fracture and matrix systems were previously looked at in Gringarten (1984) 
and Chen (1989), referenced in the bibliography. 
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by the LLNL OSI team (Carrigan, 1994; Carrigan et al., 1996; Nitao, 1998). Using this 

model and based on the results of the NPE, Carrigan made predictions regarding the 

vertical transport of 37Ar and 133Xe due to barometric pumping. Beginning with an initial 

source of 9.7 × 1012 Bq of 37Ar and 6.7 × 1015 Bq of 133Xe, they used the 1D model based 

on Nilson & Lie (1990) to calculate a resulting surface concentration of 6 Bq/m3 after 80 

days and 41 Bq/m3 after 50 days for 37Ar and 133Xe respectively. 

 

1.4 STATEMENT OF GOALS 

Of utmost importance to the accuracy and reliability of radionuclide monitoring 

for the purposes of the IMS and OSI procedure is the capacity to unambiguously identify 

a radioisotope signature as one emanating from an underground nuclear explosion as 

opposed to from a source of a peaceful nature. In order to distinguish one radioisotope 

signature from another, the expected isotopic ratios of important radionuclides must be 

known. It is well established that the processes of subsurface transport can affect the rate 

at which such gases will reach the surface. However, the relative abundance of 

anthropogenic isotopes reaching the surface following transport is currently assumed to 

rely solely on their direct fission yield, decay rate, and their production from precursor 

decay (Le Petit, et al., 2008), making no account for the influence of transport processes 

on fluctuations in isotopic ratios. While the ability to well-define such ratios as they are 

directly produced by nuclear explosions exists, the potential for alteration once 

radionuclides have transported through hundreds of meters of rock to reach the surface 

had not been considered before work began that has since culminated in the present body 

of work (Lowrey, et al., 2012; Lowrey, et al., 2013; Lowrey, 2011). As the effects of 

vertical transport on isotopic ratios of noble gas are not as well understood, the broad 



 15

goal of this work was to develop a vertical transport model for xenon and its parent 

nuclides as they result from an underground nuclear explosion in an effort to better 

understand the effects of this transport on the isotopic ratios of xenon. 

To accomplish a self-contained transport model, the first task was to define a 

source term – that is, to calculate an inventory of the concentration or activities of the 

radionuclides that result from a nuclear explosion. In particular, the source term in this 

work is time-dependent, and entails tracking the quantities of xenon isotopes 131mXe, 

133mXe, 133Xe, and 135Xe, as well as their parent radionuclides. Next, a vertical transport 

model following the scheme defined by Nilson & Lie (1990) was developed, which has 

been named Underground Transport of Environmental Xenon (UTEX). UTEX considers 

tracer transport in a 2D double-porosity model. Additionally, it accepts a generalized 

pressure function, user-defined physical parameters, as well as a time varying source term 

to calculate the outflow of tracer gas from the surface. Properties of particular gases are 

specified through the diffusion coefficient.  

 

Major goals of this Ph.D. with a short description of intent and chapter locations are 

outlined as follows: 

1. Model initial source term – (Chapter 2) While the larger goal of this work is to 

examine how geological transport can influence a given underground source 

signature, characterization of the initial source has a large effect on how 

transported radionuclide gas mixes at later times and isotopic ratios can be 

skewed. A simple, fast fission model of IAEA significant6 quantities of fissile 

                                                 
 
6The International Atomic Energy Agency (IAEA) defines a significant quantity of fissile material as the 
approximate amount of nuclear material for which the possibility of manufacturing a nuclear explosive 
device cannot be excluded (Boyer, 2013) 
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material is used to approximate the source term of a normalized 1 kton, 

hypothetical underground nuclear explosion.  

2. UTEX transport code development – (Chapters 2 and 3) The UTEX model is a 

numerical code package developed as part of this Ph.D. work that simulates the 

simultaneous movement, decay and buildup of various radioxenon isotopes as 

they originate from an underground, time-dependent source. Built upon a simple 

double porosity framework, UTEX serves as the engine for the work completed in 

this Ph.D. As such, development of the code itself is an initial major goal. 

3. UTEX transport code benchmarking – (Chapter 3) UTEX has undergone a lot of 

evolution since its creation to make the code faster, more efficient, and more 

flexible to generalized applications, many of which are considered in the second 

half of this dissertation. Accordingly, the code must be vetted and optimized. 

Through comparison with simple analytical case studies, the numerical code can 

be benchmarked. 

4. General geologic parameter sensitivity – (Chapter 4) A handful of physical 

parameters constitute the UTEX input for defining the modeled geologic system. 

A natural starting point for simulations of subsurface transport is the 

consideration of how these various parameters affect noble gas transport. This can 

be accomplished through a large scale sensitivity study covering an array of 

parameters to evaluate the resulting effects on gas outflows and isotopic 

fluctuations.   

5. Source term consideration – (Chapter 4) Once being transported, xenon gas 

produced from different source terms behave the same way. However, the time-

dependent source term itself contributes to the character of fluctuations induced 

by transport processes. This is especially important in source mixing wherein 
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oscillations in gas movement can result in radionuclide signatures that are not 

indicative of a source of any specific time. How the source specification can 

influence this transport “smearing” of signatures is considered. 

6. Sampling assumptions – (Chapter 4 and 7) Slow transport of well-contained UNE 

gas, as considered in the UTEX model, has most direct relevance to OSI science. 

How soil-gas sampling is simulated in UTEX is to be considered in terms of its 

collection assumptions as well as its location and depth. 

7. Cavity and geology characterization – (Chapter 5) The geological environment of 

a UNE is probably the most important factor in how likely a potential UNE will 

be to leak and potentially be detected. Effort should be made to study how various 

geological assumptions affect simulated transport in UTEX. Additionally, 

consideration should also be made for the fact that a UNE will have a significant 

local effect on the geology in the creation of an explosion cavity and rubblizing 

surrounding rock. 

8. Soil-gas background estimates – (Chapter 6) Soil-gas background levels of 

radionuclide gas are becoming ever more important as technology improves and 

minimum detection limits decrease. Understanding background sources and what 

can influence them is an important component in being able to distinguish low 

concentration evidence of a potential UNE from soil-gas background. 

9. On-site inspection considerations – (Chapter 7) OSI scenarios provide the most 

direct application for UTEX simulation of underground transport. A number of 

open questions remain in the OSI concept of operations, which UTEX could be 

utilized to study. The dangers of atmospheric infiltration and the barometric effect 

of sail-sampling in the subsurface are just two. 
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Chapter 2. Theory 

2.1 UNE SOURCE TERM MODEL 

This first section concerns the theory and assumptions behind the specification of 

the source terms that are effectively used in the remainder of this work to approximate a 

1 kton UNE. In this context, a source term can be thought of as an approximate inventory 

of all the radionuclides resulting from a UNE. Of particular importance to this work is 

radioxenon; among other radionuclides, the source term needs to account for the 

production of 131mXe, 133mXe, 133Xe, and 135Xe, as well as their parent radionuclides as a 

function of time. This time-varying source term will later serve to determine the amount 

of a particular radionuclide that gets created and added into the transport model at each 

step in time considered. In addition to xenon, the production and transport of radioactive 

37Ar is considered. 

2.1.1 Modeling a UNE 

Only a simplified model of a fast fission burnup is considered in this work. This 

choice is more than adequate considering that the real focus of this work is in examining 

the potential for underground transport to alter an initial radionuclide signature from an 

underground anthropogenic source. Furthermore, as a fast pulse fission burnup within a 

power reactor has a fission product spectrum that is similar to that of a nuclear explosion, 

this approximation is very suitable for the transport studies in this work. Production of 

radionuclides by a fission device detonated underground will occur predominantly by two 

processes. The first is of course the fission reactions that take place in the course of the 

explosion that yields fission products, such as xenon. A second process of importance 

yields activation products that result from non-fission reactions induced by free neutrons. 

Neutrons produced by fission reactions during the explosion can escape into the 
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surrounding media where they may undergo one or more interactions with nuclei. A 

typical fast neutron that escapes into the surrounding geologic medium can interact with 

nuclei in that medium in all the following ways: scattering (elastic and inelastic), 

radiative capture, charged-particle interactions, fast neutron reactions, and in some 

instances even fission. 

The two primary interactions between free neutrons and nuclei within the 

surrounding geologic media that need be considered here are inelastic scattering and 

neutron activation through radiative capture. Inelastic scattering is the primary interaction 

by which a high energy neutron is slowed down, and can be summarized by the simple 

expression  

' 'A An Z Z n    

where 'AZ  and 'n  denote the same nucleus and neutron but with altered kinetic energies. 

Fast neutrons scattering from much heavier nuclei will typically lose momentum as a 

result of the interaction; successive interactions of this type will eventually reduce 

neutron energies by several orders of magnitude. 

 Neutron activation by radiative capture occurs when a neutron is captured by a 

nucleus, AZ, thus creating an isotope of the nucleus that is heavier by one neutron, which 

is typically in an excited, meta-stable state, denoted A+1Z*. Upon de-excitation, a gamma-

ray is given off, leaving A+1Z. Thus radiative capture can be summarized  
1 * 1A A An Z Z Z      . 

The final product A+1Z of this reaction is often itself radioactive, and subsequently 

undergoes beta decay to yield other nuclei that are also termed activation products within 

the source term. Of particular importance to the present work is the production of 

radioactive 37Ar through  

40 37Ca Arn    . 
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The simplest possible model of an underground nuclear explosion consists of the 

2D configuration depicted in Figure 2.1. In this model, there are only two regions of 

interest: the fission device and the surrounding neutron-penetrated geologic medium. The 

fission device can be modeled as a small, spherical, critical assembly of fissile material in 

which fission occurs to produce a distribution of neutrons. Surrounding the fission core is 

a spherical region of geologic medium; neutrons that escape the core interact with nuclei 

of this medium. A basic assumption inherent in this model is that the nuclear detonation 

occurs at a depth deep enough that all of the free neutrons are eventually absorbed in the 

geologic medium. 

2.1.2 Calculation of the Source Term 

To model the neutron flux within the fission core as well as in the surrounding 

geologic medium, the code MCNP was utilized. MCNP is a general Monte Carlo 

 

Figure 2.1 Depiction of the simple nuclear explosion model, not drawn to scale. Modified 
from an illustration in Nilson, et al., (1991). 
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Neutral-Particle code used for the simulation of neutron, electron, or photon transport 

(Briesmeister, 1986). This code is capable of modeling an arbitrary 3D configuration of 

various material cells with specified boundaries. With the neutron flux profiles generated 

in MCNP as input, the code ORIGEN 2.2 was used to model the resulting material 

compositions resulting from the various particle interactions (Bell, 1973). To facilitate 

this functionality, MONTEBURNS was used. MONTEBURNS is essentially a script that 

takes an MCNP input file with specified system geometry and initial material 

compositions, calculates and transfers one-group cross-sections and flux values to 

ORIGEN, which in turn calculates and returns to MCNP the resulting material 

compositions (Poston & Trellue, 1998). These cycles, or burn steps, are repeated until the 

desired energy burnup is achieved. 

Modeling of the system using MONTEBURNS requires specification of all of the 

following major parameters: geometry of the system’s various cells, initial material 

composition within those cells, all boundaries and boundary conditions, total time to 

burn, power output, number of burn steps, and which nuclides are to be explicitly tracked 

in MONTEBURNS. Two generic compositions of fissile materials were ultimately 

considered for the fission core, one consisting of highly-enriched uranium (HEU) and the 

other plutonium, the compositions of which are shown in Table 2.1 (Stacey, 2007). 

Figure 2.2 represents a simple illustration of the model geometry. Since a true 

underground explosion scenario would take place hundreds of meters beneath the surface, 

the radius of the surrounding geologic medium, R, should ideally be of the same order as 

the depth of the device. However, it is unnecessary to simulate the neutronics in hundreds 

of meters of geology due to neutron attenuation. As a result, the parameter R is a variable 

parameter to be determined in such a way that a satisfactory fraction of all neutrons in the 
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system eventually die within the system without escaping into the vacuum cell 

surrounding the geometry, as shown in Figure 2.2. 

 

 

 

Table 2.1 Fractional composition of generic HEU & Pu for calculation of simple source 
term (Stacey, 2007). 

HEU Pu 

234U 0.12 238Pu 0.01 
235U 94.00 239Pu 93.80 
238U 5.88 240Pu 5.80 

  241Pu 0.13 

  242Pu 0.02 

  241Am 0.22 

 

Figure 2.2 Simple model used for source term calculation in MCNP, with C1 (cell 1) 
being the fission core, and C2 the surrounding geologic medium.  
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The goal of the source term calculation is to make a rough estimate of an 

inventory of radionuclide activities resulting from a generic UNE, normalized to a total of 

1 kiloton total energy release, or 4.184ൈ1012 J. MONTEBURNS requires an average 

power as one of its input parameters. Estimating the time duration of the explosion to be 

1 μs, the average power output can easily be calculated to be  
12

18 12
6

4.184 10 J
4.184 10 W 4.184 10 MW

10 s
P 


     . 

Lastly, the composition of the surrounding geologic medium needs to be defined, 

element by element. Elemental compositions of five different mediums are presented in 

Appendix A, three of which constitute rock estimates and two soil estimates. These 

compositions assume natural isotopic abundances. These five samples have been chosen 

for consideration in this study in large part because they likely represent upper and lower 

bounds for the number of activation products produced in the media surrounding the 

fission device. Note that the five estimates vary little in the concentrations of the majority 

of elements; the most notable exceptions are in the estimates of H and Fe concentration, 

the former due mainly to a difference in the treatment of water within the studies. 

Hydrogen and iron both act as neutron moderators, for they have relatively large inelastic 

neutron scattering cross-sections. The presence of these nuclei in the medium around the 

fission device is likely to mean a quicker attenuation of the outward neutron flux, 

therefore altering the distribution of activation products that result. 

 

2.2 SOURCE TERM RESULTS 

With a working compilation of MONTEBURNS, MCNP, and ORIGEN 2.2 and 

with the major parameters set as described in the previous section, simple burnup 

calculations were made with the HEU and Pu starting concentrations of Table 2.1. Since 
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all that is necessary for the basic source term calculation needed in the UTEX model is to 

simulate enough fissions to produce 4.184ൈ1012 J of energy, the burnup model was kept 

simple. The International Atomic Energy Agency (IAEA) defines a significant quantity 

(SQ) of fissile material as the approximate amount of nuclear material for which the 

possibility of manufacturing a nuclear explosive device cannot be excluded (Boyer, 

2013). Calculations modeled burnups of IAEA SQs of HEU and Pu material for a length 

of time long enough to produce the desired number of total fissions. 

2.2.1 Diagnostics 

The first step in the source term calculation was to simply test the implementation 

on the fission model and then test it with the addition of a thin shell of surrounding 

geologic media to determine whether the model depicts the neutron physics that are 

expected. Immediately noticeable in the calculation was that even though no neutron 

source was present in the geologic medium, the addition of the surrounding medium 

produced a definite alteration in the neutron flux profile within the "core." The reason for 

this is obvious; due to inelastic scattering events in the surrounding geologic medium, a 

certain fraction of neutrons are reflected back into the core where they add to the overall 

neutron flux. 

To get an idea of the magnitude of these effects, a simple analysis of the neutron 

flux profile was conducted, the results of which are summarized in Table 2.2 and Figure 

2.3. In order to determine the number of neutrons passing first out of the core and then 

back into the core upon reflection, a flag within MCNP was set up to flag neutrons that 

pass the core’s surface from the positive (rock) side to the negative (core) side. As seen 

below, neutron reflection contributes a significant fraction of the neutron flux within the 
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core; by 50 cm of rock thickness, 20% of the neutrons contributing to the total neutron 

flux in the core are flagged as having passed from the rock to the core cells.  

 

 

 

In addition to contributing to the overall neutron flux, the backscattered neutrons might 

also alter the energy flux spectrum within the core, as demonstrated by the data in Table 

2.3. Realistically, however, the time for backscattered neutrons to re-enter the fissioning 

core is likely longer than the time it takes the explosion to occur. As a result, estimates 

Table 2.2 Fractional neutron flux profile of HEU fissioning core with various thicknesses 
of surrounding Wedepohl rock.  

Rock 
thickness 

n flux 
from core 
alone 

n flux 
coming 
from rock

1cm 0.9491 0.0509 
10cm 0.8442 0.1558 
50cm 0.7972 0.2028 
100cm 0.7947 0.2053 

 

Figure 2.3 Fraction of neutrons in HEU fissioning core flagged and non-flagged as 
coming from the surrounding medium 
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for products resulting from fissioning in the core were made assuming no backscattered 

neutrons (in other words, calculated without the surrounding geology). With regard to 

soil activation, neutrons that escape the core undergo inelastic collisions with nuclei of 

the surrounding rock, losing energy along their path. As the rock thickness surrounding 

the fissioning core increases, neutrons penetrate deeper into the rock and lose increasing 

amounts of energy.  

 

 

Of secondary importance in Figure 2.3 and Table 2.2 is the asymptotic nature of 

the variation of neutron flux characteristics with increasing thickness of surrounding 

rock. For the Wedepohl rock composition used in those analyses, beyond an outer 

thickness of 80-100 cm, additional amounts of rock media have negligible effects on the 

physics within the fissioning core. As stated in the previous section and illustrated in 

Figure 2.2, the explosion model should include a geologic media of thickness, R, such 

that a suitably small fraction of the system neutrons escape into the outer vacuum cell.  

Figure 2.4 shows the results of a simple MCNP analysis of the fraction of 

neutrons that are lost through escape into the outer vacuum as the thickness of 

surrounding rock is increased. Again, the Wedepohl rock composition was utilized 

Table 2.3 HEU core neutron energy flux profile for various thicknesses of Wedepohl rock 

% flux by energy range 
Rock 

Thickness(cm) Thermal Intermediate Fast 
0 0 5.39 94.61 

1 0 5.54 94.46 

10 0 7.02 92.98 

25 0 9.92 90.08 
50 0.14 12.44 87.42 

100 0.34 12.90 86.76 
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surrounding a HEU fission core. As depicted in the figure, the neutron escape fraction 

drops below 1% around R = 125 cm, below 0.1% around 160 cm, and approaches 0.01% 

by 200 cm. The particular value that constitutes a “suitably small” escape fraction is 

somewhat arbitrary; the runtime of a MONTEBURNS burn source term calculation 

involving a fissioning core and 200 cm thickness of surrounding geologic medium was of 

the order 12 hours on an Intel Core 2 Duo CPU computer, a length of time deemed 

long enough to devote to a single calculation. As such, an R = 2 m was taken for the 

thickness of geologic media for all source term calculations. Given that the five 

compositions studied have some variation, particularly in their hydrogen and iron 

content, 200 cm of thickness assured that all source term calculations yielded neutron 

escape fractions of below 0.1%. 

 

 

 

Figure 2.4 Fraction of n escaping the system for various thicknesses of Wedepohl rock 
surrounding HEU core 
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2.2.2 Source Term Calculation Results 

With the input parameters verified and set, calculation of the source term was just 

a matter of patience while letting the numerical model process. The output of most 

interest from a burn run of MONTEBURNS is a final inventory of nuclide concentrations 

within the system. These concentrations represent the initial state of the system 

immediately following the fission event, assuming one of the five geologic compositions 

listed in Appendix A. To determine the time-varying source term, this initial inventory 

was can be fed into ORIGEN 2.2 and decayed for various lengths of time to obtain a 

database of radionuclide inventories at various times following the detonation. Table 2.4 

and Table 2.5 provide a snapshot of the source terms of some of the most pertinent 

radionuclides. 

While ORIGEN 2.2 decay is perfectly sufficient to determine these inventories at 

any time desired, this strategy grows prohibitively cumbersome in the construction of 

decay cards and the extraction of data for, say, 10,000 time intervals, as is necessary for 

use in the UTEX transport code. To really make use of these data in the transport model, 

an analytical source term was derived, for which an understanding of the physics behind 

the source term time evolution is necessary.  

Figure 2.5, Figure 2.6, and Figure 2.7 show the decay chains of 131Xe, 133Xe, and 

135Xe respectively and Table 2.6 provides ORIGEN 2.2 generated activity levels for the 

relevant radionuclides at several times. Even following the simulated fission event, new 

radioxenon is continually produced from the decay of its parent radionuclides. As an 

example, consider the decay chain of 135Xe as shown in Figure 2.7. An analytical source 

term calculation for 135Xe is relatively simple because in this case the first three parent 

radionuclides have half-lives of less than 20 seconds – within a few minutes, and 

certainly within an hour, nearly all of these short-lived parents have decayed away. 
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Table 2.4 Activities in Ci of Xe radioisotopes following modeled 1 kton explosion at 
various post-burn decay times, assuming both uranium and plutonium cores. 

Initial 1 hr 10 hr 1 day 10 days 30 days 100 days 

U
ra

n
iu

m
 

C
or

e 

131mXe 1.361E-01 7.948E-01 2.386E+01 5.972E+01 3.555E+02 2.638E+02 7.439E+00 
133Xe 1.964E+02 6.481E+03 8.824E+04 1.709E+05 1.127E+05 8.120E+03 7.805E-01 

133mXe 1.560E+03 1.984E+03 7.379E+03 1.208E+04 1.743E+03 3.122E+00 7.441E-10 
135Xe 1.109E+05 6.651E+05 2.000E+06 1.329E+06 1.843E-01 2.334E-17 0.000E+00 

P
lu

to
ni

um
 

C
or

e 

131mXe 1.811E-01 9.736E-01 2.705E+01 6.791E+01 4.147E+02 3.094E+02 8.740E+00 
133Xe 6.991E+02 7.171E+03 8.886E+04 1.717E+05 1.134E+05 8.178E+03 7.861E-01 

133mXe 5.446E+03 5.831E+03 1.078E+04 1.490E+04 1.906E+03 3.425E+00 8.163E-10 
135Xe 2.648E+05 9.930E+05 2.269E+06 1.459E+06 1.988E-01 2.518E-17 0.000E+00 

 

Table 2.5 Activities of 37Ar in Ci resulting from modeled 1 kton explosion and 
subsequent neutron activation in 2m of various surrounding soil and rock 
compositions. 

Initial 10 hr 1 day 10 days 30 days 100 days 

U
ra

n
iu

m
 C

or
e 

Wedepohl 1.014E+03 1.005E+03 9.937E+02 8.316E+02 5.597E+02 1.401E+02 

Taylor 9.455E+02 9.377E+02 9.270E+02 7.757E+02 5.222E+02 1.307E+02 

Mason 4.616E+02 4.579E+02 4.526E+02 3.788E+02 2.549E+02 6.380E+01 

Bowen 3.488E+02 3.460E+02 3.420E+02 2.862E+02 1.926E+02 4.820E+01 

Vinogradov 3.477E+02 3.448E+02 3.409E+02 2.853E+02 1.920E+02 4.805E+01 

P
lu

to
ni

um
 C

or
e Wedepohl 1.760E+03 1.745E+03 1.725E+03 1.444E+03 9.717E+02 2.432E+02 

Taylor 1.502E+03 1.489E+03 1.472E+03 1.232E+03 8.294E+02 2.075E+02 

Mason 7.241E+02 7.182E+02 7.100E+02 5.941E+02 3.999E+02 1.001E+02 

Bowen 5.021E+02 4.980E+02 4.922E+02 4.119E+02 2.773E+02 6.938E+01 

Vinogradov 5.011E+02 4.970E+02 4.913E+02 4.111E+02 2.767E+02 6.925E+01 
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Figure 2.5 The decay chain of 131Xe and its parent radionuclides. 

 

Figure 2.6 The decay chain of 133Xe and its parent radionuclides. 

 

Figure 2.7 The decay chain of 135Xe and its parent radionuclides. 
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The UTEX model was written to include a Bateman equation solving routine for 

the determination of the nuclide inventory resulting from an arbitrary specification of the 

source for the nuclides listed in Table 2.6. The strength of this routine is that any starting 

source concentrations can be modeled and the resulting xenon inventories as well as 

instantaneous ingrowth rates can be determined for an arbitrary time step length and at 

any given time. This greatly facilitates the inclusion of a flexible, time-dependent source 

term in the UTEX model. The source term for 131mXe, 133mXe, 133Xe, and 135Xe carried 

out to 100 days following the initial simulated fission event is shown in Figure 2.8. 

 

 

Table 2.6 Activities in Ci of radioxenon and parent radionuclides resulting from 1 kton 
HEU fission core detonation. 

INITIAL 15.0MI 1.0HR 3.0HR 10.0HR 1.0D 10.0D 100.0D 

IN131 2.899E+09 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SN131 4.655E+08 2.400E+04 3.013E-09 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SB131 2.832E+07 3.257E+07 8.392E+06 2.256E+05 7.181E-01 7.279E-12 0.000E+00 0.000E+00

TE131 3.181E+06 1.434E+07 1.444E+07 1.348E+06 1.636E+04 1.182E+04 8.041E+01 1.703E-20

TE131M 4.729E+04 6.224E+04 8.196E+04 8.511E+04 7.257E+04 5.252E+04 3.572E+02 7.563E-20

I131 3.426E+02 8.821E+03 5.349E+04 9.689E+04 9.966E+04 9.782E+04 4.942E+04 2.115E+01

XE131M 1.361E-01 1.611E-01 7.948E-01 5.252E+00 2.386E+01 5.972E+01 3.555E+02 7.439E+00

IN131 2.899E+09 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SN133 2.967E+09 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SB133 3.431E+08 4.911E+06 1.114E+01 9.895E-15 0.000E+00 0.000E+00 0.000E+00 0.000E+00

TE133 6.012E+07 6.384E+07 6.361E+06 2.809E+05 1.433E+03 3.908E-02 0.000E+00 0.000E+00

TE133M 1.519E+07 1.289E+07 7.345E+06 1.637E+06 8.547E+03 2.330E-01 0.000E+00 0.000E+00

I133 6.203E+04 8.789E+05 1.675E+06 1.868E+06 1.541E+06 9.669E+05 7.233E+02 0.000E+00

I133M 3.895E+08 3.072E-22 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

XE133 1.964E+02 8.739E+02 6.481E+03 2.582E+04 8.824E+04 1.709E+05 1.127E+05 7.805E-01

XE133M 1.560E+03 1.603E+03 1.984E+03 3.300E+03 7.379E+03 1.208E+04 1.743E+03 7.441E-10

SN135 1.213E+08 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

SB135 2.638E+09 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

TE135 4.114E+09 3.372E-05 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

I135 2.519E+06 5.869E+06 5.425E+06 4.399E+06 2.111E+06 4.865E+05 7.108E-05 0.000E+00

XE135 1.109E+05 2.990E+05 6.651E+05 1.275E+06 2.000E+06 1.329E+06 1.843E-01 0.000E+00

XE135M 6.606E+06 3.798E+06 1.241E+06 7.062E+05 3.382E+05 7.793E+04 1.139E-05 0.000E+00
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2.3 TRANSPORT BASICS 

The intent of this section is twofold. First, the basic terminologies and principles 

underlying the theory of gas transport that are necessary to the forthcoming discussion of 

the vertical transport model are presented. Second, these basic principles are utilized to 

characterize two very simple scenarios of subsurface vertical transport of a trace gas. This 

discussion then leads into the more complex analytical, double-porosity model of gas 

transport. 

2.3.1 Basics of Transport Theory 

Diffusion refers to the net migration of particles from regions of higher 

concentration to regions of lower concentration as a result of random particle motions. 

Defining ( )C C x  as the concentration of a tracer in a system described by the vector 

Figure 2.8 Radioxenon source term resulting from HEU core explosion. 
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coordinates x , and J  the flux of the tracer, then the above definition for diffusion can be 

restated mathematically as  

D C  J .  (2.1) 

This relation is known as Fick’s first law of diffusion. The negative sign in Equation (2.1) 

indicates that a positive flux of particles is directed down the concentration gradient. The 

constant of proportionality, D, is termed the diffusion coefficient, or diffusivity, and 

accordingly has dimensions in SI units of [m2/s]. The diffusion coefficient is actually 

specific to the substance that is diffusing as well as the fluid in which it is located, and is 

a function of temperature, pressure, and dynamic viscosity (defined below) (Bird, et al., 

2006). Considering the one-dimensional isothermal, isobaric, binary diffusion of one 

substance i in another j, Eq. (2.1) becomes simply7  
i

i ij C
J D

x


 


.  (2.2) 

In a porous medium, the ratio of fluid-filled, void volume Vvoid to the bulk volume 

Vbulk is termed the porosity,  = Vvoid / Vbulk.. Diffusion through a porous medium is 

characterized by the bulk properties of the medium in addition to the properties of the 

fluid which fills the pores. As such, an effective diffusion coefficient ij
eD  is defined as  

ij ij
eD D




   (2.3) 

where  is a dimensionless parameter called tortuosity, which has no single, agreed-upon 

definition, but essentially is a measure of how “twisty” a curve is (Epstein, 1989). Note 

also that some sources define the tortuosity as T =  / τ. While conventions might differ, 

the effect of the tortuosity factor is to reduce the diffusivity to account for an increase in 

path lengths as a result of “obstacles” within a porous medium. 

                                                 
 
7 Note that the superscripts in Eq. (2.2) are indices rather than exponents; or more accurately they are 
labels. 
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Advection refers to the transport of a substance by a fluid as a result of the bulk 

motion of the fluid. Here the term fluid is used loosely, but because advection by 

definition requires the existence of a current, it cannot occur in a solid. One dimensional 

advection of a fluid through a porous medium is described generally by Darcy’s law  
k p

J
x


 


.  (2.4) 

Note that this equation has the same form as Equation (2.2) - the movement of a 

substance is determined by a pressure gradient in the bulk fluid. The constant of 

proportionality in this case is determined by the permeability, k, and the dynamic 

viscosity, μ. The permeability is a characteristic of a porous medium describing its 

capability to transmit fluid, and has SI units of [m2]. Permeability is also commonly given 

in the literature in terms of millidarcy (mD), equivalent to 10-15 m2. The dynamic 

viscosity is a measure of a fluid’s internal resistance to flow in response to an applied 

stress, and has SI units of [Pas] (Bird et al., 2006). 

 Nominal values for the parameters described above are given in Table 2.7, 

adopted from Nilson et al. (1991), and unless stated otherwise, these values will be 

assumed throughout the rest of this chapter. 

2.3.2 Gas Flow by Diffusion 

It has long been known that diffusion alone cannot account for the vertical 

transport of contaminant gases from deep underground to the surface. As an example, 

consider the following scenario considered in Nilson et al. (1991), which will be utilized 

and modified in subsequent sections as well. Assume that a gaseous contaminant is 

distributed underground throughout an area bounded from below at a depth L = 500 m by 

an impenetrable floor and initially extends upwards a distance L0 = 300 m as depicted in 

Figure 2.9. 
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8 The ‘m’ label here is necessary to distinguish parameters as they apply to the bulk matrix medium from 
later values as they apply to fractures. 

Table 2.7 Values assumed for transport theory parameters. 

Parameter Assumed Value 

porosity (in matrix)8  m = 0.1 

permeability (of matrix) km = 10-15 m2 

tortuosity  = 10 

dynamic viscosity (air) μ = 210-5 Pas 

 

Figure 2.9 Depiction of diffusion transport scenario. Modified from a figure in Nilson et 
al. (1991). 
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Consider one small element of the so-called contamination front, which lies on 

the initial fresh air-contaminant interface as shown on the right of Figure 2.9. If the 

contaminated region extends sufficiently far laterally, then the transport of this element 

can be considered one-dimensional. Discounting adsorption effects, continuity requires 

that a change in concentration in this element must be due to a flux of contaminant, 

therefore  

  0
C

J
t x

 
 

 
  (2.5) 

and upon substitution of Eq. (2.2) for the flux (ignoring the i and j labels for clarity) this 

becomes  
2

2

( , ) ( , )C x t C x t
D

t x

 


 
.  (2.6) 

Eq. (2.6) is the diffusion equation, the solution of which in this 1D scenario is a 

quick, easy exercise in the application Laplace transformations. Since the vertical column 

begins with no concentration inside, the initial condition is ( 0,0) 0C x   . As for 

boundary conditions, clearly ( ,0) 0C x    is one. For the second, assume that 

diffusion beneath the interface is sufficient to maintain the concentration at 0x  at a 

constant value 0 (0,0) (0, )C C C t  . Transforming both sides of Eq. (2.6) with respect 

to time yields. 
2

2

0

( , )
( , ) ( ,0)

C x s
sC x s C x D

x



 


 

2

2

( , )
            ( , )

C x s s
C x s

x D





 

1 2( , )
s s

x x
D DC x s a e a e


  . 

This is the general solution. Based on the first boundary condition above, a1 = 0. The 

transformed second boundary condition requires that 00
(0, ) (0, ) stC s C t e dt C s

    so  
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the reverse transform of which finally yields  

0( , )
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x
C x t C erfc

Dt

   
 

.  (2.7) 

This result introduces a very important ratio 4x Dt  that is characteristic of 

solutions to the general diffusion equation. Erfc is the complimentary error function, and 

varies between 1 and 0 as the above ratio varies from 0 to . Since D is typically very 

small, long times t are usually required to make the above ratio approach 1 or less. This 

introduces the notion of the characteristic timescale for the migration of the contaminant 

front by diffusion given D and a desired depth of transport x, usually written  
2

D

x
t

D
 .  (2.8) 

Taking D(133Xe) = 1.24E-5 m2·s-1, the characteristic time for diffusion of 133Xe up 

the 200 m separating the interface and surface in Figure 2.9 is tD ≈ 3.23E9 s or 

102.3 years! This is much too long of a window for atmospheric monitoring.  

2.3.2 Gas Flow in a homogeneous medium 

Consider now a simple model of vertical transport of a contaminant in a 

homogeneous single-porosity medium, driven by atmospheric pumping. The scenario is 

depicted in Figure 2.10. The flow through this medium is determined by the same 

parabolic partial differential equation as the diffusion scenario 
2

2

p p

t x
 


 

  (2.9) 

where  

0kp


   (2.10) 
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is known as the bulk pneumatic diffusivity and p0 is the mean static pressure in the 

system (Carslaw, et al., 1962). If the surface pressure varies harmonically about p0 with 

period T and maximum amplitude p, and the system is bounded from below by a water 

table then the pressure at a depth x responds according to Equation (2.9), the solution of 

which is given by  

0

cosh 1

cosh
i t

x
i

p p L
e

p i






    


  (2.11) 

where /L    and 2 / T   (Carslaw et al., 1962). If the average static pressure 

p0 is taken to be 105 Pa, the amplitude of the variation 02 30p p  , the period T = 200 

hours, and the depth to the floor L = 500 m, then using Eq. (2.11) to model the pressure 

response within the top ten meters of the system yields Figure 2.11. 

 

 

 

Figure 2.10 Depiction of transport in a homogenous medium by differential volumetric 
displacement, from Nilson et al. (1991). 
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Being able to model the underground pressure response to variations in the 

surface pressure is an important component to the UTEX model. For now, however, 

assume as a theoretical upper bound that the diffusivity of the porous medium is large 

enough that the air pressure within the entire system very closely follows any variations 

at the surface. For isothermal, sinusoidal variations in surface pressure, a piston-like 

response results in which there is a differential volumetric displacement of the 

concentration front, as illustrated in Figure 2.10. If L0 is the depth of contaminant beneath 

the surface, and A the lateral area of the system, then an isothermal change in pressure 

Δp/p0 results in an incremental shift in volume ΔV/V0, where V0 = AL0 and accordingly 

ΔV = AΔL. As a result, the differential displacement in concentration front due to an 

isothermal shift in pressure can be estimated by  

0 0

L p

L p

 
 .  (2.12) 

 

Figure 2.11 The analytical pressure response within the first 10 meters below the surface; 
given as a fraction of the deviation from the mean static pressure.  
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A value of Δp = 2/30p0 as utilized above in Figure 2.11 represents an upper bound 

variation in surface pressure. Even with this value, for L0 = 300 m of contaminant, the 

maximum expected displacement of the concentration front would be  

0
0

2
(300 m) 20 m

30

p
L L

p


    . 

Given that the contaminant lies 200 m below the surface in this example, a shift of 20 m 

during a deep barometric low will never bring contaminant to the surface. Additionally, 

by this simple model the front will retreat back down once the pressure rises again. 

2.3.3 Gas Flow in a fracture embedded in a homogeneous medium 

As a last example before considering the double-porosity model on which the 

UTEX code is based, consider now the same scenario as described in Section 2.3.2 but 

with the addition of a narrow fracture embedded within the otherwise homogeneous 

matrix medium. In contrast to the model without the fracture, consider now that the 

differential volumetric expansion that results from a barometric low is channeled entirely 

into the narrow fracture. Assuming for now that there is no further seepage of the 

contaminant from the fracture into the higher matrix levels, then this addition of the 

fracture to the system leads essentially to an amplification of the expansion.  

If the width of the matrix slab between successive fractures is m and the fracture 

width is f, then by taking a simple ratio of matrix to fracture volumes, Equation (2.12) 

now leads to  

0
0

m m

f

p
L L

p

 


   .  (2.13) 

Note that the porosity of the fracture, f, is taken to be 1, otherwise it too would appear in 

the denominator. Taking m = 2 m, f = 0.001 m, then the height by which the 

contaminant can rise within the fracture is  
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   
 
0.1 1 m2

(300 m) 2000 m
30 0.001 m

L   . 

Even much more modest pressure variations of 1/100 p0 would be enough to bring the 

contaminant up the 200 m to the surface in a single low period within this model. 

 

2.4 DOUBLE-POROSITY MODEL 

As a basis for vertical transport of subsurface contaminant implemented in UTEX, 

the double-porosity model is a 2D model that is locally 1D and builds upon lessons 

learned from the simpler models described previously. By double-porosity and 1D it is 

meant that the model considers gas flow both horizontally in the bulk matrix as well as 

gas flow vertically within the fractures as driven by pressure responses due to varying 

surface pressure. 

In this section, an analytical outline of the double-porosity model is presented as a 

foundation for the numerical treatment that it will receive in the next chapter. Beyond 

facilitating an understanding of the numerical approach, this analytical theory also 

provides an upper bound estimate of the amount of the outflow possible with barometric 

pumping as the driving force. A large amount of the following is derived from the work 

of Nilson et al. (1991). 

2.4.1 Overview of the model 

Figure 2.12 depicts the scenario as well as the major parameters that influence the 

double-porosity model. The model considers homogeneous slabs of bulk matrix media, 

porosity m and permeability km, embedded with vertical fractures of width f and 

separated by an average distance m. The contaminating gas is assumed to be distributed 

uniformly throughout the matrix medium below the interface line. Above the 
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contaminated zone lies an assumedly partially-saturated fresh air buffer zone; saturation 

effects in this model are presumed to be accounted for in the values of m and km. Unlike 

the model presented in Section 2.3.3, seepage from the fractures into this buffer region is 

assumed with the effect being that gas moving upwards along a fracture gets filtered, thus 

trapping rising contaminant.  

The first objective in this model is to modify Equation (2.11) to determine the 

pressure response of this modified matrix plus fracture system, where before only the 

matrix was considered. From this, a breathing efficiency is derived to describe the 

amount of gas that “breathes” in and out of the system during a single barometric cycle. 

Next, the actual contaminant transport within the combined fracture-matrix system is 

analytically determined based on the harmonically varying flow of fluid induced by the 

calculated pressure response. As contaminant rises (and falls) within the fractures, 

seepage into the buffer region results in a generally upward migration of the contaminant 

front with each cycle. From this a diffusion-exchange efficiency is derived to quantify the 

 

Figure 2.12 Schematic of the double-porosity model, from Nilson & Lie (1990). 
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fraction of gas that flows out. After a number of barometric cycles, a quasi-steady state is 

established in which the maximum contaminant outflow per cycle is estimated by the 

overall transport efficiency, a combination of the breathing efficiency and the diffusion-

exchange efficiency. 

2.4.2 Pressure response of the fracture-matrix system 

Pressure within the fracture and matrix individually follow diffusive equations 

like Equation (2.9). Because there is an exchange between the two, an additional 

interaction term must be included. Defining the x-direction as decreasing upward along a 

fracture and the y-direction as horizontal into the matrix, the flow of gas within the 

system is governed by two coupled partial differential equations 
2
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. (2.14) 

Parameters f and m are termed pneumatic diffusivities and relate the speed of pressure 

waves along the fracture (laminar flow9) and within the porous matrix (“Darcian” flow10) 

respectively, defined  

 2

0 0       and         
12

f m
f m
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p k p
 

 
  . (2.15) 

For a sinusoidal variation in barometric pressure at the surface, an exact solution 

to Equation (2.14) can be found through separation of variables to be the real part of  
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 (2.16) 

                                                 
 
9 Laminar flow can be thought of as smooth flow without obstruction. 
10 Just refers to flow through a porous medium following Darcy’s laws. 
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where (1 ) / 2i i   (Nilson et al., 1991). A derivation of this solution is also included 

in Appendix C.1 concerning pressure response verification of the UTEX model. The 

parameters λm, λf, and λfm are so-called Fourier numbers defined according to  

          and                  
2
m

m f
m f

L
   

 
   (2.17) 

1/2

tanh
1 m m m

fm f
f m

i

i

   
 

 
   

 
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where L is the total depth from the surface to the impermeable floor. 

If the velocity u within the fracture at the surface is given by  
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 (2.19) 

then the outflow volume of gas that leaves and then reenters the system at the surface 

each cycle can be calculated from 
2

/2

20
0

tanhT fm fm
f

f fm

ip
V udt L

p i

 


 


   . (2.20) 

This result, V, represents the actual volumetric outflow in a given cycle. A theoretical 

maximum volumetric outflow is obtained if the pressure response, instead of given by 

Equation (2.16), is assumed everywhere to closely follow the barometric variations at the 

surface. In this upper bound case  
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From Eqs. (2.20) and (2.21), the breathing efficiency is defined as the ratio of the actual 

versus the maximum volumetric outflow per cycle 
2
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. (2.22) 

Figure 2.13 shows values of the breathing efficiency B versus the fracture 

spacing m for several values of 2 2
fm fmL   . Note that a sharp knee occurs in each 
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case at around m = 10 m, corresponding roughly to half the penetration depth of each 

pressure wave. For spacing greater than the penetration depth, the efficiency falls off 

quickly because the inner regions within the matrix slabs are not being reached. 

2.4.3 Diffusion exchange efficiency 

Having derived the efficiency with which barometric pumping leads to the 

outflow of gas from the system during each cycle, consider now the actual transport of a 

small quantity of contaminant gas up through a fracture. As contaminant rises (or falls) 

within the fracture, diffusion drives contaminant through the permeable fracture walls 

and into the fresh air-filled regions within the buffer region of the matrix. This creates a 

filtering effect, and ultimately slows down the initial rise of contaminant within the 

  

Figure 2.13 Breathing efficiency versus fracture spacing for several values of fm. 
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fractures as the concentration gradient extends upward. Figure 2.14 depicts a fracture 

embedded within a permeable matrix, as well as the diffusion effects. 

The diffusion exchange model of transport depicted in Figure 2.14 is governed by 

another pair of differential equations not too different from those in the previous section 

2
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w w

C C D C
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t x a y

C C
D

t y

 

 

  
 
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 

. (2.23) 

The first equation governs advection along the fracture (left side of the equation) as well 

as diffusion into the matrix (inhomogeneous term on the right). The porosities c and w 

describe the porous material filling the channel of half-width a and the wall of thickness 

b respectively. The depth to which diffusion occurs in the matrix is given by d. Because 

 

Figure 2.14 Illustration of diffusion exchange between fracture and matrix, from Nilson 
et al. (1991). 
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the channel consists of both fracture and matrix material, the channel porosity is taken as 

a volume-weighted average  
( 2)
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m f f

c
f

d

d
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





. 

The wall porosity w is simply the matrix porosity m. The second equation in Equation 

(2.23) describes simple diffusion within the matrix. Note that the diffusivity here, D, is 

assumed to be the effective diffusivity (Equation (2.3) given that diffusion is taking place 

within a porous medium. 

The solution to the coupled differential equations in Equation (2.23) is far from 

trivial. If the simplifying assumption that the longitudinal velocity (along the fracture) is 

harmonic, 0Re( exp( ))u u i t  and no bulk motion occurs in the transverse direction, then 

the problem becomes analogous to the heat transfer problem investigated by Chatwin 

(1975) and Kurzweg (1985). Rather than look for a general solution, consider a particular 

solution of the form  

  i tC x bg y e      (2.24) 

wherein /y y b  , and dC dx   represents the gradient of the time mean  

concentration along the fracture. If the gradient along the fracture is assumed to be 

constant, i.e. γ = CB / L where CB is the time-averaged concentration at the bottom, then 

upon substituting Equation (2.24) back into the matrix portion of Equation (2.23) the 

following ordinary differential equation for g(y*) is found  
2

0
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g i g
D

   .  (2.25) 

This has the solution  

    * *cosh 1g y A iW y    (2.26) 
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where /W b D  is known as the Womersley number. Lastly, substitution of 

Equations (2.24) and (2.26) into the fracture portion of Equation (2.23) and solving for A 

yields  

 *

0
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tanh coshc

W i yiu W i
g

b W i W i W i 
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 (2.27) 

where /w cb a    is simply the ratio of wall volume to channel volume. With g now 

determined, plugging Equation (2.27) back into Equation (2.24) gives the final expression 

for the concentration along the fracture at a given time. 

 The diffusion-exchange efficiency is found by determining the ratio of actual 

mass outflow in one cycle to the maximum possible outflow. Recall that the velocity of 

gas was assumed to be harmonic along the fracture, 0Re( exp( ))u u i t . Using this, the 

actual mass of contaminant exiting the system in one cycle (period T) is given by the 

time-integral of the flux of contaminant passing through the upper surface at x = 0. 
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The maximum outflow is given by the time-averaged concentration CB multiplied by the 

gross outflow per cycle (i.e. no diffusion into the matrix) given by  
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Figure 2.15 shows a graph of the diffusion-exchange efficiency versus fracture 

spacing for various values of the pneumatic diffusivity, fm. Similar to the case of the 

breathing efficiency, beyond a fracture spacing of 10 m there is no added benefit to the 

diffusion-exchange efficiency because the pressure wave can only penetrate so far into 

the matrix. 

With both the breathing efficiency B and the diffusion-exchange efficiency D 

defined in Equations (2.22) and (2.30), the overall transport efficiency is just  

max max
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B B
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  (2.31) 

Figure 2.16 shows graphs of the overall efficiency versus fracture spacing for several 

values of fm using a xenon-approximate value of D = 3E-6 m2/s. As depicted in the 

figure, for high pneumatic diffusivities, a maximum overall efficiency of 10% is 

 

Figure 2.15 Diffusion-exchange efficiency versus fracture spacing for several values of 
fm 
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theoretically possible. If the latter part of Equation (2.31) is rearranged and the 

approximation that the initial mass of contaminant is 0 0 / 2BM C V  then the fraction of 

contaminant exiting per cycle can be roughly estimated  

0 0

2
M p

M p
 

 .  (2.32) 

Taking a maximum overall efficiency of 10% as well as a maximum pressure variation of 

the order 10%, then Equation (2.32) suggests a fractional outflow of about 1% per 

barometric cycle is theoretically possible after substantial buildup of the concentration 

front.  

Clearly, as a rigorous mathematical evaluation of a real scenario, Equation (2.32) 

and perhaps even the idea of an overall efficiency are lacking. However, as a back-of-the-

envelope approximation they serve a great deal to suggest an upper bound theoretical 

limit for the effectiveness of barometric pumping as a mechanism for subsurface 

 

Figure 2.16 Overall efficiency versus fracture spacing for several values of fm. 
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transport. Additionally, within the analytical framework presented here, the governing 

equations for a numerical vertical transport model have been laid out. 
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Chapter 3. UTEX model 

In the preceding chapter, the governing equations for isothermal gas transport in 

the double-porosity model have largely been laid out. Though perhaps implied previously 

but not exactly stated explicitly, the applicability of the double-porosity model is founded 

on five broad assumptions regarding the system of study (Tang et al., 1981): 

1. Fracture width is assumed to be much less than the length of the fracture, 

௙ߜ ≪  .ܮ

2. Complete mixing across the fracture width is assumed. 

3. The matrix permeability, km << 1. 

4. Fracture transport is assumed to be much faster than matrix transport. 

5. Isothermal transport is assumed; heat transfer could also apply 

These assumptions combined facilitate the simplification of the model as locally 1D, in 

that, the two-dimensional system reduces to two coupled, orthogonal 1D systems: vertical 

transport in the fracture and horizontal transport in the adjacent matrix. 

 A flow diagram of the major subroutines within the UTEX code is shown in 

Figure 3.1. An outline for the numerical processes is as follows. At the beginning of a 

given time step, the pressure response throughout the system due to variation of the 

surface pressure is calculated. From that, resulting fluid velocities can be estimated. Next, 

the concentrations of contaminant within the system can be determined through the 

coupled tracer transport equations, which assume diffusion and advection along the 

fracture, orthogonal transfer of mass between the fracture and surrounding matrix blocks, 

and finally diffusion and advection within the adjacent horizontal matrix blocks. 

Radioactive decay and source ingrowth will as well be accounted for throughout the 
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system. Note that because this work is concerned primarily with the transport of the noble 

gas xenon, sorption effects are not considered in the model. 

 Lastly, the introduction of numerical approximation schemes for differential 

operators in advective transport equations can lead to effects of so-called numerical 

diffusion. These effects are due largely from the repetitive switching of the periodic 

“upwind direction” in the calculation. These errors are most dangerous as they 

accumulate over many cycles. To combat the potential erroneous effects of numerical 

diffusion, the filtering remedy and methodology (FRAM) originally suggested in a study 

by Chapman (1981) and extended in Chapman and Waisman (1985) is to be employed.  

   

 

 

Figure 3.1 Flow diagram of the modularized UTEX code. 
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3.1 UTEX SYSTEM DEFINITION 

An illustration of the system as it is modeled is given in Figure 3.2. All parameter 

definitions as utilized in the previous chapter are reused here. Specifically, fractures are 

assumed to have an average width f and have an air-filled porosity of f. Fractures are 

separated by matrix slabs of thickness m, and are characterized by an air-filled porosity 

m and permeability km. Given the symmetry of the system, only one half-slab of matrix 

and fracture is modeled at a time. An N  M computational mesh is utilized wherein the 

positive y-direction is downwards along the fracture with [1, ]i N  while the positive x-

direction stretches into the matrix with [1, ]j M . 

 

 

Figure 3.2 Illustration of the double porosity and discretized system model, with relevant 
system parameters noted. The dashed lines identify the unit cell concept 
within the larger extended system. 
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Throughout this chapter, subscripts i and j will refer to y and x cell indices 

respectively, while superscripts n will denote time steps. Cell widths as illustrated in 

Figure 3.2 will be defined by x and y and time step duration will be denoted t. 

 

3.2 GOVERNING EQUATIONS 

3.2.1 Pressure response 

Transport in the UTEX model is assumed to take place by both gas diffusion and 

bulk advective flow. The latter is driven by pressure gradients that arise in the system due 

to the variation of atmospheric pressure at the top of the system (surface). Specification 

of the surface pressure as a function of time is thus a necessary input to the model and 

UTEX allows for a completely general specification of the surface pressure as a function 

of time. Linear interpolation is used to estimate the surface pressure in cases where the 

simulation time steps are shorter than the pressure history resolution. When the pressure 

at the top of the system changes in time, the resultant change in pressure throughout the 

rest of the system is neither homogeneous nor instantaneous. This pressure response, 

assuming the double-porosity system model, is indicative of the isothermal flow of an 

ideal gas and is governed by the coupled pore-fluid diffusion equations:  
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 (3.2) 

wherein A is defined as the cross-sectional area of the fracture and  is the fracture-

matrix contact area per unit length, which can be assumed for simplicity to satisfy  = A. 

Equation (3.1) applies horizontally along a row of bulk matrix medium and Equation 
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(3.2) applies vertically within the fracture column. The pore-fluid diffusivities within the 

fracture and matrix respectively, f and m are given by  

 2

0 0    and    
12
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f f

f m

p k p
 

 
    (3.3) 

where again f andm are the fracture and bulk matrix media porosities respectively, km is 

the bulk permeability, µ is the dynamic viscosity of air, and m is the average separation 

of fractures.  

To facilitate the simplification of Equations (3.1) and (3.2), the diffusivities of 

Equation (3.3) are treated as constants by taking p(x,y) ≈ p0, the average pressure in the 

system, in the numerators, which is justified because even large variations in atmospheric 

pressure constitute only small fractional changes from mean pressures. Note that for non-

homogeneous geologic models in which layers are present, Equation (3.3) could not be 

treated as constants because the porosities and bulk permeability would then be functions 

of depth within the system, however, such a change would not alter the method of 

solution, only the resulting coefficients that go into the calculation. On the system mesh 

defined in Figure 3.2, Equations (3.1) - (3.3) define the first coupled system of equations 

that must be solved by the UTEX model. 

3.2.2 Mass transport 

The coupled equations describing mass transport in the system are very similar to 

those describing the pressure response, except with the addition of a few terms. First, an 

additional term to account for advection resulting from the variation in pressure response 

throughout the system is needed. Second, a spatially-dependent source term is needed to 

account for a generalized source. Lastly, radioactive decay of transported nuclides can be 

implicitly accounted for in the mass balance with the decay constant λ. Thus the position 
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dependent concentration of the ith radioxenon isotope is determined by solution of the 

following coupled system of equations:  

 ( , ) ( , )
( , ) ( , ) ( , ) ( , )i i

m i m i m i i i
C x y C x y

C x y v x y D C x y s x y
t x x x

               
 (3.4) 

 

/2

0

( , ) ( , )
( , ) ( ) ( , ) ( , )

( , )

i i
f i f i f i i i

m i
m

C x y C x y
C x y u y D C x y s x y

t y y y

C x y
dx

t



   



    
        





 (3.5) 

Equation (3.4) describes the horizontal transport of gas in the bulk matrix medium 

at a given height y corresponding to a horizontal row in Figure 3.2, and Equation (3.5) 

describes the vertical transport along the fracture column where again x = 0. These 

equations take into account diffusion and advection as well as the radioactive decay of 

the isotopes and a general time-dependent source term s(x,y) (Ci/cm2s). The diffusion 

coefficients Di(cm2/s) appearing in Equations (3.4) and (3.5) are tortuosity-weighted. The 

flow velocities u(y) and v(x,y) (cm/s) are determined by the differential pressures that 

arise in the system due to variations in atmospheric pressure according to  

 2

          and          
12

f mkp p
u v

y x


 

 
  

 
. (3.6) 

3.2.3 Discretization scheme 

To be clear, for each horizontal row of Figure 3.2 whose depth is defined by a 

constant y there is an associated Equation (3.1) and (3.4) for the pressure response and 

gas transport respectively in that row during each time step. There is also an Equation 

(3.2) and (3.5) for the pressure response and gas transport along the single vertical 

fracture; these are coupled to the systems of equations describing the horizontal bulk 

matrix rows through the “fracture-matrix interaction” integrals appearing in those 

equations. 
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Pressure Response 

Solution of pressure response and mass transport equations for each time step can 

be made by Gaussian elimination with periodic boundary conditions at the interior of the 

matrix and a closed bottom boundary. To account for time (and other first) derivatives, a 

first-order backwards difference approach is employed, meaning that  
1n n

ij ijp pp

t t

 


 
  (3.7) 

and second-order diffusive operators are estimated by second-order centered differencing, 

for example  
2

1 1

2 2

2 2n n n
i j ij i jp p pp

x x
  


 

.  (3.8) 

Of the two governing equations for the pressure response, Equation (3.1) can be 

represented in a fully implicit discretized form. Application of the differencing schemes 

above yields  

 
1

1 1 1
1 12

2
n n
ij ij n n nm

ij ij ij

p p
p p p

t x


  
 


  

 
. (3.9) 

Equation (3.9) can then be rearranged to reveal the following tridiagonal system of 

equations 
1 1 1
1 1

n n n
j ij j ij j ij ija p b p c p f  

      (3.10) 

for any horizontal line of fixed i where  
2

2

/

1 2 /

j m

j m

j j

n
ij ij

a t x

b t x

c a

f p





   

   





.  (3.11) 
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The i and j subscripts appearing here denote the vertical and horizontal mesh 

indices respectively while the n and n+1 superscripts denote the previous and current 

time steps respectively. 

Equation (3.2) for the pressure response down the vertical fracture simplifies 

similarly except there is an additional interaction integral term to discretize, which for 

now will just be denoted Ii : 
1 1 1

11 1 11 1
n n n

i i i i i i i iA p B p C p I F  
       (3.12) 

2

2

1 1

1 2

i f

i f

i i

n
i i

t
A

y

t
B

y

C A

F p






 




 







  (3.13) 

Equations (3.10) and (3.12), aside from the interaction term in the latter, represent 

familiar systems of tri-diagonal equations, for which a number of solution schemes exist. 

With the pressure response throughout the system determined, the resulting flow 

velocities can be determined as follows  

 2
1 1

1 11 11

1 1
1 11

           [2, 1]
12 2

              , [2, 1] [2, 1]
2

n n
fn i i

i

n n
ij ijn m

ij

p p
u i N

y

p pk
v i j N M

x






 
  

 
 


  




     



 (3.14) 

 

Gas Transport 

The discretized equations for mass transport within the UTEX are entirely 

analogous to those of the pressure response with one important exception. Equations (3.4) 

and (3.5) include an additional advection term that must be handled somewhat carefully 



 60

due to the numerical schemes being considered. A straightforward discretization of these 

two terms using the scheme of (3.7) is not difficult, but due to the random and rapid 

periodic nature of the driving surface pressure, care must be taken in how the advection 

terms are calculated. These concerns are addressed in the mesh reduction and 

benchmarking portion of this chapter. The approach adopted in the early UTEX model 

followed that suggested in Nilson and Lie (1990) based on the FRAM filtering scheme of 

Milt Chapman (1981). An overview of how this scheme was previously applied is 

detailed in the Appendix B. 

Discretization of the transport equations (3.4) and (3.5) is now outlined (J.D. 

Lowrey & Osborne, 2011). These equations are rewritten below for easy reference. 

Along the matrix: 

 m m m m
C C

Cv D C
t x x x

      
   

     
 

 

and down the fracture: 

 f m f f f
C C C

Cu dx D C
t y t y y

        
    

 
     

 
  

Making substitutions for discretization, along the matrix this becomes 

 
1 1 1 1 1 1

2

2

2 2

n
ij ij ij ij ij ij ij ij ij

m m m ij m ij
C C C C C C C v v

D v C C
t x x x

            
   

   
 

and down the fracture 

 

1 1 1 1 1 1

2

2

2 2

          

n
ij ij i j ij i j i j i j i i

f f f ij ij

n
ij ij

f ij m

C C C C C C C u u
D u C

t y y y

C C
C x

t

 

  

         
  

   


  


 

Matrix equations 

 Since the matrix equation is simpler as it does not include an interaction term, it is 

considered first: 
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     

 

1 1 1 1 1 12

1 1 12 2

1 2

2
2 2

          

1 2
2 2

          
2

mn
ij ij ij ij ij ij ij ij ij ij

m m

ij

m
ij ij m ij ij

m m

m
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m

D t v t t
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x x x

C t

v t D t t t
C C D v v t

x x x x

v t D t
C

x x

 



 



     

  



  
       

  
 

      
               
  

     
n
ijC

 

This gives the tridiagonal matrix coefficients: 

 

2

1 12

2

2

1 2
2

2

m

m

ij m ij ij
m

m

m

v t D t
E

x x

t t
B D v v t

x x

v t D t
A

x x








 

 
 

 
 

     
 

 
  

 

 (3.15)

 

Fracture equations 

The situation down the fracture is analogous to the matrix but with the addition of 

the fracture-matrix interaction term, Ii 

   

 

 

1 1 1,1 1 1,1 1,1 1,12

1 1 1 1

1,1 1 1 12 2

1,1
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fn
i i i i i i i
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i i i i
f f j

f f
i i i i

f f
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y y
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C u u C t t x

y t

u t D t D t t
C C u u t

y y y y

C




 


 

   

 

  



 
     

 

 
     

 

      
               





122
f n

j i i
f

u t D t
I C

y y
  
      

 

So the coefficients for the fracture are: 
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 
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  
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  
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  

     

 (3.16) 

Special attention must be paid to the fracture concentrations C(1,1), C(2,1) and 

C(3,1) because of the boundary.  In these cases, advection is neglected.  Hence: 

[1:3] 2

[1:3] 2

[1:3] 2

1 2

f

f

f

D t
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y

D t
b t

y

D t
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y




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

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


 


  (3.17)

 
and similarly for the bottom of the fracture. 

After substitution of matrix concentration equation, the fracture-matrix interaction 

term can be written: 

   

 

1 1 1 12
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1 1
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

   
                 

 
    


 (3.18) 

The above equations still include an implicit term accounting for radioactive decay. In the 

final UTEX model, radioactive decay and source ingrowth are handled explicitly at the 

end of each time step as depicted in Figure 3.1 and thus is not included from this point 

forward in the mass balance equations.  
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3.3 SOLUTION SCHEMES 

Equations (3.9) - (3.18) effectively define the pressure response and gas transport 

within the UTEX modeled system. Initially the UTEX model employed a solution 

scheme that followed that suggested in Nilson and Lie (1990) known as the Thomas 

Algorithm (Lowrey, 2011). During the course of code development and benchmarking 

three different numerical solution methods for solving the above systems of equations 

were considered and compared: Thomas algorithm (TA) solution, simultaneous matrix 

(SM) solution, and Newton's method (NM) solution. 

The three numerical solution methods detailed in the following sections were 

applied to both the pressure response and gas transport systems of equation. While these 

two sets of equations represent separate physical phenomena, they have already been 

shown to be discretized such that they are mathematically of the same form, differing 

only in the coefficients and along boundaries. For purposes of brevity and to avoid 

unneeded redundancy, the focus of the solution comparisons of this section is on 

solutions to the pressure response. Solutions of the transport equations follow the same 

procedures but with modified coefficients.  

3.3.1 Thomas Algorithm (TA) 

The Thomas Algorithm, or Tri-Diagonal Matrix Algorithm, is a simplified 

Gaussian elimination approach that makes use of successive forward and then backward 

sweeps through the system to determine a unique solution from the boundary conditions. 

In its application to the UTEX model systems of equations, it represents an arguably less-

sophisticated approach than the next two methods to follow, but is straightforward to 

implement and has previously been used with the double porosity geological model 

(Nilson & Lie, 1990).  
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The Thomas Algorithm applied to (3.10) for the horizontal rows offers a recursive 

solution  
1 1 1 1

1
n n n n
ij ij ij ijp e p d   

     (3.19) 

with modified coefficients given by 

 

1
1
1

1
11
1
1

jn
ij n

j j ij

n
ij j ijn

ij n
j j ij

a
e

b c e

f c d
d

b c e










 







   (3.20) 

subject to the inner boundary condition 1 1n
iMe    and 1 0n

iMd    where j = M is the 

innermost matrix point. This requires knowledge of the pressure in the adjacent fracture 

(the other boundary condition), pi1. To facilitate coupling to the fracture, it is convenient 

to write each pij in terms of the adjacent fracture value pi1 so that for a fixed row i the 

pressure anywhere in the matrix row can be written 
1 1 1 1

1
n n n n
ij ij i ijp g p h       (3.21) 

where again the coefficients are given recursively as 
1 1 1

1

1 1 1 1
1

n n n
ij ij ij

n n n n
ij ij ij ij

g g e

h h e d

  


   




 
  (3.22)  

with 1
1 1n

ig    and 1
1 0n

ih   . Equations (3.19) - (3.22) together form a recursive solution to 

Equation (3.10) for the pressure in the rows, provided a solution to fracture pressures can 

be found. 

Solution for the fracture pressure response, Equation (3.12) is set up in nearly the 

exact same way, except that the additional interaction term that provides fracture-matrix 

coupling must be dealt with. In fact, Equations (3.21) and (3.20) allow this to be done 

easily, starting with the discretized form of the interaction integral appearing in Equation 

(3.2): 
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   
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  

  
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        

 

  
 (3.23) 

What is important to note in Equation (3.23) is that only one term multiplies a 1
1
n
ip   term 

- the remaining terms are all known values. As such, Equations (3.10) and (3.12) become  
1 1 1

11 1 11 1
n n n

i i i i i i iA p B p C p F  
      (3.24) 

with  
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 (3.25) 

 Solution to the fracture pressure is then set up exactly like was done for the matrix 

rows. All that is needed is the top boundary value which corresponds to the new t = n+1 

surface pressure. Once the fracture pressures are solved, those pressures provide the 

boundary values for the matrix row pressures. A summary of the solution scheme is thus: 

For each time step, the following routine is executed 

1. For each i (horizontal line into matrix): 

Sweep from j = M to 1 and calculate ije  and 1n
ijd   using Equation (3.20). 

Sweep from j = 1 to M and calculate 1n
ijg   and 1n

ijh   using Equation (3.22). 

2. For each j = 1 (along fracture): 

Sweep from i = N to 1 and calculate 1ie  and 1
1
n
id   using Equation (3.20). 

Sweep from i = 1 to N and calculate 1
1
n
ig   and 1

1
n
ih   using Equation (3.22). 
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Sweep from i = 1 to N and calculate 1
1
n
ip   using Equation (3.21). 

3. For each i (horizontal line into matrix): 

Sweep from j = 1 to M and calculate 1n
ijp   using Equation (3.21). 

3.3.2 Simultaneous Matrix (SM) 

The objective of the simultaneous matrix solution approach is to formulate 

Equations (3.10) and (3.12) such that they can be written as a single, (very) large matrix 

equation, AP = b to be solved by modern sparse matrix solution routines. This 

formulation can be achieved by expanding out the sum that defines the fracture-matrix 

interaction term, Ii, in Equation (3.12) and vectorizing the matrix of pressures pij so that  

2,1 2,2 2, 3,1 3,2 3, ,1 ,2 ,[( , ,..., ), ( , ,..., ),..., ( , ,..., )]M M N N N MP p p p p p p p p p  

where the system is assumed to be N rows deep and M columns across.  

Making use of Equation (3.1) and discretizing the second order derivative, the 

interaction term for a row i can be written  

 , 1 , , 1
2

2i i j i j i j
j

I D p p p 


     (3.26) 

where the superscripts n+1 have been left off for clarity and  

2
m

i m
f

t
D

x








  (3.27) 

Plugging Equation (3.26) into Equation (3.12), simplifying and grouping terms leads to 

an expression for fracture pressures given by  

1,1 ,1 1,1 ,2 , 1 , ,1( ) n
i i i i i i i i i i i M i i M iA p B D p C p D p D p D p p          (3.28) 

where Equations (3.10) - (3.11) still apply within the matrix rows. 

Figure 3.3 shows an example matrix construction given a system that is 5 rows 

deep with a 6th virtual row for  the boundary condition and likewise 5 columns wide with 
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a 6th virtual one. The right-hand constant side for this example would be 

 
1

2,1 1,1 2,2 2,3 2,4 2,5 3,1 3,2 3,3 3,4 3,5

4,1 4,2 4,3 4,4 4,5 5,1 5,2 5,3 5,4 5,5

[ , , , , , , , , , ,...

           , , , , , , , , , , 0, 0, 0, 0, 0]

n n n n n n n n n n n

n n n n n n n n n n

b p Ap p p p p p p p p p

p p p p p p p p p p

 
 

Then, as stated before, the system solution for t = n+1 would be given by solution 

for P to the matrix equation AP = b. 

3.3.3 Newton's Method (NM) 

As evidenced in the previous two solution schemes, the only really complicating 

factor in solving the pressure response (and transport) equations for the double porosity 

model in UTEX is the fracture-matrix interaction term Ii of Equation (3.12) which 

couples the otherwise separate vertical and horizontal pathways. The first two solution 

schemes have striven to simultaneously solve for the fracture column and matrix rows; 
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Figure 3.3 Example simultaneous matrix representation for 5x5 system. 
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this last Newton’s Method scheme iterates over the matrix and fracture solutions 

separately during each time step until the system converges to the unique solution. 

Much of the formalism needed to apply Newton’s Method has already been laid 

out, but for conciseness and ease of reference it is summarized here again in a slightly 

different form. The discretized pressure equations for the matrix rows and fracture 

column are reproduced below:  

1 1 0n
j ij j ij j ij ija p b p a p p       (3.29) 

11 1 11 1
n

i i i i i i i i iA p B p A p I p g        (3.30) 

where the coefficients appearing here are  
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
  

 

 (3.31) 

Again, the n+1 superscripts have been dropped and all terms have been moved to the left-

hand side of the equations with the exception of a new term gi introduced in Equation 

(3.30). The idea is that G = ( g1, g2, … gi, …, gN ) is a vector of solutions to the set of 

simultaneous equations, and in order to satisfy the true pressure equation for the fracture, 

all entries of G have to be zero. 

Newton’s Method obtains an iterative solution for the fracture pressure, denoted 

by the vector p , by computing  
1 1 ( )k k kp p J G p     (3.32) 

where k here refers to the index of Newton iterations (not time steps), and J refers to the 

Jacobian matrix, which is computed by taking the first derivative of the solution vector G 

with respect to the fracture pressure vector p and is defined  
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. 

In practice, however, J is computed by slightly perturbing the fracture pressures 

by Δp, calculating the resulting solution vector G(p + Δp) from Equation (3.30), and then 

finally  
   G p G p pG

J
p p

 
 
 

.  (3.33) 

The implementation of the Newton’s Method scheme then goes as follows: 

1. Compute matrix pressures 0 ( )k
ijp t t    using Equation (3.29) and the fracture 

pressure vector p(t) as the boundary condition (BC). 

2. Compute the interaction term 0 ( )k
iI t t    from Equation (3.31) using these 

0 ( )k
ijp t t   . 

3. Compute the fracture pressures 0 ( )k
ip t t    from Equation (3.30) using the 

0 ( )k
iI t t    and G(p0)=0  

4. Given a convergence threshold ε, while 1k k
i ip p     perform Newton’s Method: 

a. Perturb the fracture pressures: 'k k
i ip p p    

b. Compute perturbed matrix pressures 'k
ijp  using Equation (3.29) and 'k

ip  

as the BC 

c. Compute perturbed interaction term 'k
iI  from Equation (3.31) using the 

'k
ijp  

d. Compute a perturbed solution vector ( )kG p p  from Equation (3.30) 

using 'k k
ip p p    and 'k

iI  
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e. Compute J from Equation (3.33) using ( )kG p p  and ( )kG p  

f. Compute the new pk+1 from Equation (3.32) 

5. When the fracture pressure has converged, the interaction term and matrix 

pressures will also have converged. The system has then moved forward to t + Δt 

and the solution is repeated for the next time step. 

 

3.4 UTEX BENCHMARKING 

3.4.1 Analytical solution comparisons 

For the sake of comparison with the numerical calculation conducted in the 

UTEX model, the pressure response in the system can be computed analytically if one 

chooses a simple analytic function to represent the surface pressure variations, such as  

   00,0; cosp t p p t  .  (3.34) 

With Equation (3.34) for the driving surface pressure, standard separation of variables 

can be applied to Equations (3.1) - (3.2) in order to find a closed-form solution for the 

pressure everywhere in the system (Nilson et al., 1991). This is the same result as 

Equations (2.16) - (2.18), a derivation of which is shown in Appendix C.1. 

The vertical transport code calculates and utilizes pressure information as it 

deviates from the average surface pressure; i.e. p(x,y;t) - p0. Thus an analytical 

comparison to the numerical estimation of pressure response within the system is easily 

carried out with Equation (2.16) multiplied by the amplitude of the surface pressure 

variations ∆݌଴. 
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The numerical versus analytical comparisons conducted here make use of the 

physical system parameters listed in Table 3.1. The transport code requires specification 

of the number of vertical and horizontal mesh points, N and M, as well as the length of 

time step, ∆ݐ. From these, the time and position values needed for Equation (2.16) are 

easily derived, and Equation (2.16) is easily implemented within the code to make a side-

by-side calculation of the analytical pressure response with the numerical approximation. 

As a base for comparison, a system scenario defined by (N×M) = (200×7) was 

utilized11. The pressure response at each time step is tracked explicitly at every mesh 

point within the model, and since Equation (2.16) can be used at any given (x,y;t), a 

comparison of the numerical scheme with the analytical solution can be carried out in 

many ways. A strict way of doing so is to consider a specific point within the system and 

track the evolution of the numerical versus analytical pressure response at that point.  

                                                 
 
11 This is to say, 200 vertical mesh points by 7 horizontal. 

Table 3.1 Summary of physical system parameters used in conducting numerical vs. 
analytical pressure response comparison. 

Parameter Assumed Value Parameter Assumed Value 

porosity (matrix)  m =  0.1 fracture width ߜ௙ ൌ  0.001m 

porosity (fracture)  f =  0.95 matrix slab width ߜ௠ ൌ  1m 

permeability (matrix) km =  10-15 m2 mean surface pressure ݌଴ ൌ  10ହPa 

tortuosity  =  10 max pressure variation ∆݌ ൌ  5݌଴/30  

dynamic viscosity (air) μ =  210-5 Pas period of oscillation ܶ ൌ  8 days 

   total system depth ܮ ൌ  500m 
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At the top of the system, mesh point (1,1), there is no “response” to be calculated 

– the pressure here is merely the harmonically varying surface pressure. Figure 3.4 (on 

the next page) indeed shows that both numerical and analytical solutions overlap exactly, 

as they should. As a first critical point for testing, Figure 3.5 shows the same plot as 

Figure 3.4 but for the mesh point (199,1) located at the bottom of the fracture. Again, the 

numerical calculation almost exactly models the analytical solution with maximum 

deviations on the order of 10 Pa, which represents about 0.01% of the mean barometric 

pressure at the surface. 

Of greater interest is a point deep within the matrix slab; Figure 3.6 shows the 

pressure response for the mesh point (199, 6), which can be considered to be at the 

bottom of the system. The numerical estimation of the pressure response is again very 

close to that of analytical solution, but there is now some noticeable deviation between 

the two. Figure 3.7 shows a “close-up” of the rising edge to illustrate the deviation in 

greater detail, which presents itself as if the numerical solution has the same shape and 

amplitude but slightly lags behind the analytical solution in phase 

The modeling of the fracture-matrix interaction term is of central concern. As 

demonstrated above, the pressure response within the fracture as estimated numerically is 

practically identical to the analytical solution. This is not really all that surprising, sense 

the physics of the pressure response within the fracture is rather simple. However, as is 

also demonstrated above, considering points beyond the fracture within the matrix slab 

introduces some small disagreement between the numerical and analytical solutions, so a 

natural question to consider is how does the numerical model hold up to increasing 

widths of matrix slabs, ߜ௠?  

 

 



 73

 

 

 

Figure 3.4 Pressure response tracking at (1,1) in 200x7 mesh model. 

 

 

Figure 3.5 Pressure response tracking at (199,1) in 200x7 mesh model. 
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Figure 3.6 Pressure response tracking at (199,6) in 200x7 mesh model. 

 

Figure 3.7 Close-up of the deviation in pressure response at (199,6) in 200x7 mesh 
model. 
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Figure 3.8 shows a plot of the pressure response with the exact same system and 

model configuration as the plot in Figure 3.6 except that now ߜ௠ ൌ 10	m instead of 1 m, 

thus the point (199, 6) corresponds to a point about ten times deeper within the matrix. As 

compared with Figure 3.6, the response of Figure 3.8 is very “delayed” and much more 

suppressed, which is exactly what is expected because there exists a limited diffusion 

depth beyond which pressure variations from the fracture simply cannot penetrate further 

into the matrix slab. This depth for the given system parameters is about 10 m, thus at 

depths of ߜ௠ ൌ 10	m and greater the pressure response should fall of quickly. More to 

the point, however, is that this greater depth results in a significantly greater deviation of 

the numerical result from the analytical pressure response solution.  

 
 

 

Figure 3.8 Pressure response tracking at (199,6) in 200x7 mesh model, now using 
௠ߜ ൌ 10m slab-width. 
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The increased “error” depicted in Figure 3.8 as compared to Figure 3.6 is due to 

numerical diffusion. By increasing ߜ௠ ൌ 10	m from 1 m, the horizontal mesh spacing 

has effectively been made coarser and the diffusive transport of the pressure waves is 

overestimated by the numerical scheme. Consider lastly Figure 3.9, which now models 

the ߜ௠ ൌ 10	m using a horizontal mesh spacing ten times smaller than that of Figure 3.8, 

i.e. M = 70 instead of 7. The result is that the numerical pressure response calculation 

now much more closely follows the analytical solution.  This leads now to the mesh 

reduction study conducted to determine an optimal mesh on which to run UTEX 

simulations. 

 

 

Figure 3.9 Pressure response tracking at (199,69) in 200x70 mesh model, using ߜ௠ ൌ
10m slab-width. 
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3.4.2 Mesh reduction study 

A number of analyses were conducted to assess the effect of mesh reduction on 

the squared standard errors resulting from various numerical versus analytical 

calculations. These included studies of the above pressure response, some of the results 

of which are presented here, as well as other comparisons of simple diffusion and 

advection transport scenarios, such as those presented Appendix C.2 and C.3.  

In Figure 3.10, the effect of varying the length of the time step in the numerical 

simulation of the pressure response is summarized; the driving surface pressure is again 

described by Equation (3.34) and the analytical solution is the same as before in 

Equations (2.16) - (2.18). Length of the time step is the mesh parameter with the most 

direct effect on the total simulation time, and the Δt = 60 s that is used in the larger 

sensitivity study was selected because, as shown in Figure 3.10, a factor of ten further 

decrease (and factor of ten longer simulation time) resulted in only a fractional 

improvement in the deviation. 

 

Figure 3.10 Error in the numerical pressure as a function of Δt. The deviations of the 
numerical pressure calculation from the analytical one are plotted at three 
different points in the system, using a 100 x 200 mesh, on a log-log scale.  
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Figure 3.11 and Figure 3.12 show similar results of mesh reduction for vertical 

and horizontal mesh spacing respectively, using the time step Δt = 60 s. In Figure 3.11 

the average error along the fracture improves by an amount of order 1E-8 as the number 

of vertical mesh points is increased from 100 to 1000. As shown in Figure 3.12, the error 

along a row of matrix exhibits a greater dependency on the number of horizontal mesh 

points than the fracture errors do on the number of vertical mesh points. A mesh size of 

100 × 200 vertical and horizontal mesh points was chosen to optimize numerical 

deviation from analytical as well as keep simulation times reasonable; this choice is 

assumed much of the remainder of this work. 

 

 

 

 

Figure 3.11 Error in the numerical pressure as a function of number of vertical mesh 
points. The average deviations along the fracture of the numerical pressure 
calculation from the analytical one are plotted versus N.  
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3.4.3 Alternate solution method comparison 

Comparison of the initial UTEX Thomas Algorithm numerical estimate with the 

analytic solution to the pressure response for the simple harmonically varying surface 

pressure of the previous section led to the choosing of an optimal system mesh on which 

to run the UTEX model. This mesh was then utilized to compare the Thomas Algorithm 

(TA) scheme to the two additional solution methods based on a simultaneous matrix 

(SM) representation of the system of equations and a Newton's Method (NM) iterative 

method. Results presented here were obtained using a pressure history compiled from 1-

hour interval true barometric data at Mercury, NV over a period of 70 days and linearly 

interpolated to obtain pressures at smaller resolution to match the 60-second time steps.  

  

  

Figure 3.12 Error in the numerical pressure as a function of number of horizontal mesh 
points. The average deviations along a row of matrix (at y = L/2) of the 
numerical pressure calculation from the analytical one are plotted versus M.  



 80

This same pressure history was also utilized in subsequent UTEX sensitivity studies, 

which are discussed in detail in the next chapter. All three numerical solution methods 

detailed above were implemented into the UTEX MATLAB® code for calculation of both 

the system pressure response and the simulated gas transport at each time step. Again for 

brevity's sake, illustration of the comparisons of this section is on solutions to the 

pressure response and analogous results for transport are summarized. 

In Figure 3.13 is shown an example plot of the pressures calculated down the 

fracture as a function of depth for each of the three solution methods after 100 iterations 

of the code.12 The three solution curves, on this scale are indistinguishable; in fact, the 

solutions are in exact agreement to nine significant digits. To facilitate visualizing the 

deviation in calculated pressures between the methods, Figure 3.14 shows the same 

pressures after subtracting out the first eight significant digits of the solutions at each 

point. What is immediately evident on this closer look is that the Newton's Method and 

Simultaneous Matrix solutions tend to match very closely while the Thomas Algorithm 

calculations can deviate slightly from the other two. This is even more obvious in Figure-

5, which shows the absolute pressure deviation of each method from the mean of the 

three solutions at each mesh point down the fracture. Again, the largest deviations are in 

the Thomas Algorithm solution while the deviations from the other two are smaller and 

match closely. 

 

 

 

 

                                                 
 
12 The pressures in Pascal are with respect to a roughly mean atmospheric pressure of 105 Pa. 
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Figure 3.13 Comparison of the calculated fracture pressures as a function of depth after 
100 time steps for each of the three numerical methods; on this plot scale the 
curves are indistinguishable from one another. The mesh spacing 
corresponds to a physical depth of 4.5 m. 

 

 

Figure 3.14 Comparison of the calculated fracture pressures as a function of depth after 
100 time steps for each of the three numerical methods with the agreeing 8 
significant digits subtracted out. 
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Figure 3.15 Fracture pressure deviations from the mean of all three calculations as a 
function of depth after 100 time steps for each of the three numerical 
methods. 

The nature of these deviations can almost certainly be attributed to an 

accumulation of round-off error in the calculation of these solutions using double-

precision floating point numbers for which the best accuracy in MATLAB is 

2.2204E-016. Each of the three solution implementations, though starting from same 

system of equations to be solved at each time step, proceeds to solution by different sets 

of floating point operations. As a result, due to the inherent limitation of machine 

precision, it is expected that each solution method should incur an error associated with 

repeated round-off or truncation in these operations; the resulting error is often described 

as round-off noise and the stochastic nature of this noise is clear in the pressure 

deviations shown in Figures 3-7 (Widrow & Kollár, 2008). 

In Figure 3.16, absolute deviations between the three different pairings of the 

three solution methods are plotted as a function of depth down the fracture. Again, the 
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smallest deviations and thus strongest correlations are given predominantly by the 

deviation between the Newton's Method (NM) and Simultaneous Matrix (SM) methods 

suggesting that they agree the strongest. Correlating the Thomas Algorithm (TA) method 

with either of the other two results in a deviation that is on-average an order of magnitude 

higher (these two curves overlap in Figure 3.16 and Figure 3.17). A likely explanation for 

this is that the TA implementation entails a large number of explicit point by point 

computations in the forward and backward sweeps over which truncation error can 

accumulate, whereas the NM and SM methods rely much more on built-in MATLAB 

functions to solve the system (in particular the '\' or slash operator). Additionally, in  

Figure 3.17, the means of the three correlations of Figure 3.16 are plotted as a function of 

time steps to show that these deviations remain fairly stable as the UTEX simulations 

proceed.  

 

 

Figure 3.16 Fracture pressure deviations among the three numerical methods as a 
function of depth down the fracture after 100 time steps of simulation. 
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These observations for the pressure response calculations down the fracture apply 

equally to the pressure elsewhere in the system as well as for the solutions to the gas 

transport component of the UTEX model. Table 3.2 summarizes the mean cross-

deviations in pressure and concentration between the three different solution methods 

after 2000 iterations of the code. Note that the magnitude of concentrations being 

considered are three orders of magnitude smaller than the pressure values, but what is 

important to notice in Table 3.2 is that deviation trends for the concentration are the same 

as for the pressure calculations - the Newton's Method and Simultaneous Matrix solutions 

are closer by about of factor of 10 than they are to the Thomas Algorithm, and in all cases 

the deviations only occur beyond the ninth significant digit.  

 

 

Figure 3.17 The average pressure deviations along the whole fracture length (i.e. mean of 
the curves in Figure 3.16) as a function of time step of simulation. Note that 
the (higher) NM vs. TA and SM vs. TA very closely overlap. 
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Lastly, the relative computation time for the three solution methods to simulate 

2000 iterations varies as follows, the Thomas Algorithm proved the fastest in this test at 

just less than 10 minutes, Newton's Method solution at 14 minutes and the Simultaneous 

Matrix solution at 19 minutes. The bulk of the calculation time in the latter two consists 

of converting to and manipulation of very large sparse matrices such as that shown in 

Figure 3.3. 

 

3.5 CONCLUSIONS 

A big advantage of streamlining and modularizing the early UTEX code was that 

it facilitated a piece-by-piece examination of the numerical implementation for testing 

purposes. A number of mesh reduction studies were undertaken to evaluate the precision 

of the numerical calculations with respect to choices in mesh size. The most important of 

these studies was a comparison of the modeled pressure response to an analytical solution 

Table 3.2 Summary of solution method comparisons for the pressure response and gas 
transport in UTEX calculated as deviations among the pairs of methods at 
different points within the system after 2000 iterations of the code. 

 NM vs. SM NM vs. TA SM vs. TA 

  Mean Pressure deviations (Pa) 

m=1 (fracture) 0.08466e-10 0.84563e-10 0.84995e-10 

m = 100 (midpoint) 0.01103e-09 0.11104e-09 0.11152e-09 

m = 200 (endpoint) 0.01023e-09 0.10220e-09 0.10272e-09 

 Mean Concentration deviations (Ci/m3) 

m=1 (fracture) 0.10328e-13 0.96524e-13 0.99814e-13 

m = 100 (midpoint) 0.03468e-12 0.29417e-12 0.29228e-12 

m = 200 (endpoint) 0.03321e-12 0.29154e-12 0.28841e-12 
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for a simple harmonically varying surface pressure. This was used to benchmark the 

numerically calculated pressure response in UTEX as the mesh spacing was varied. 

Results of this and similar studies led to an eventual choosing of an optimal system 

discretization of N × M = 100 × 200, that is 100 mesh points vertically and 200 

horizontally. 

A number of studies were also undertaken to benchmark the transport results of 

UTEX to verify that the numerical code was actually calculating what it was supposed to 

be calculating. Analytical solutions for gas transport in the system as a whole are 

intractable. To make analytical solutions possible, the different transport mechanisms 

were examined individually. By turning off the pressure variations (or forcing flow 

velocities to be zero) and setting decay constants to zero, it is possible to reduce the 

transport equations to simple one-dimensional diffusion equations that have analytical 

solutions. The same can be done in the UTEX model to facilitate an evaluation of the 

numerical accuracy in the diffusion transport calculations. Similarly, diffusion can be 

turned off and the flow velocities forced to remain constant to again obtain a tractable set 

of transport equations for comparison of advective transport. Numerical accuracies for 

these cases compared to analytical solutions were all of the order 0.01% or smaller, but in 

general these accuracies are dependent on the specified values for the geologic input 

parameters, particularly the size of the mesh spacings and time step. This is related to the 

concept of the Courant number, which places a confidence bound on mesh spacing for a 

given length of time step and flow velocity. 

The most basic conclusion that can be drawn from the numerical solution scheme 

study presented in this chapter is that the Thomas Algorithm, Simultaneous Matrix, and 

Newton's Method solution implementations within the UTEX code all yield solutions to 

the system physics that agree to better than nine significant digits. This lends a very 
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strong confidence that within the context of the mathematical equations formulated to 

represent the system, precise solutions can be obtained on the chosen system mesh with 

any of the three methods. The very small disparity between the solution methods is very 

likely due to the limitations of machine precision and the resulting accumulation of 

truncation error, which is manifested in a round-off noise associated with the very least 

significant digits. 

Aside from simple considerations of computation time, there are other practical 

differences in the three implementations. The Thomas Algorithm, while slightly faster 

than Newton's Method in the cases considered, is seemingly most susceptible to round-

off error as well as the most difficult method of the three to adapt to other systems. For 

instance, a natural progression in UTEX capability is to consider systems of arbitrary 

width with multiple systems of fracture and bulk matrix medium. Whereas the Thomas 

Algorithm and Simultaneous Matrix solution methods would be altered significantly and 

become extremely memory intensive as the system grew larger, the Newton's Method 

implementation is almost naturally portable to larger, more complex systems.  For this 

reason alone, as well as the observation that all three methods yield confident solutions, 

the Newton's Method approach was chosen for continued UTEX development and 

optimization, applications of which will be demonstrated in subsequent chapters. 
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Chapter 4. Initial UTEX Transport and Source Studies 

Early development of the Underground Transport of Environmental Xenon 

(UTEX) model began as a Master’s project, the goal of which was to establish the 

possibility that subsurface movement could alter the isotopics of radioxenon gas as it 

might emanate from an underground nuclear explosion (Lowrey, 2011). As such, the 

modeling capabilities of UTEX have evolved substantially, and largely speaking, the goal 

of this Ph.D. work was to develop, demonstrate, and explore these various modeling 

capabilities. In this chapter, the earlier results of modeling with UTEX are presented, 

which lays the foundation for exploration of more specific aspects of the code input and 

applications to OSI scenarios in the chapters that follow.  

 

4.1 SMOOTH PRESSURE TRANSPORT IN EARLY UTEX 

4.1.1 Non-decay source 

The general physical system considered in early transport work with UTEX 

consists of an assumed system depth of L = 500 m, an initial contaminant distribution 

that begins at a depth of L0 = 300 m and continues to the bottom of the system (therefore 

there is an initial fresh-air buffer zone extending down 200 m from the surface). As an 

initial effort to reproduce a transport scenario considered in Nilson et al. (1991), in the 

base case of the early study the fracture width is taken to be f = 1 mm and the fracture 

separation m = 1 m. The porosities of the fracture and bulk matrix are respectively f = 1 

and m = 0.1 and the matrix permeability is assumed to be km = 10-15 m2.  

For the purpose of simplifying the transport in the system and isolating individual 

parameters and their effect on the results, a simple sinusoidal variation in surface pressure 



 89

is assumed with a period of 200 hours and starting with an amplitude of 2/30p0 where p0 

is the mean pressure in the system. Figure 4.1 shows a plot of the pressure response (as a 

fractional deviation from p0) in the system for a single horizontal row in the bulk matrix 

medium. As time progresses downwards, the surface pressure varies harmonically; at 

points in the matrix nearest the fracture, the propagated pressure response is felt quickly. 

Deeper in the matrix, however, the pressure fluctuations occurring at the surface are 

attenuated and propagate much less rapidly.  

 

Figure 4.1 Pressure response across a horizontal slice of the matrix over two periods of 
barometric oscillations at depth x = 400 m. Note that time evolves 
downwards in the plot. 
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Initially, transport of a stable xenon gas over 100 days was simulated using this 

smooth pressure function to drive advective flow in the system. The resulting 

instantaneous and cumulative gas outflows (as a fraction of the total initial inventory) are 

shown in Figure 4.2. In the early time regime over the first three months or so, the gas 

outflow is largely suppressed as the amplitude of the surface pressure fluctuations are not 

enough to immediately draw out gas. However, due to fracture-matrix diffusion of gas 

moving along the fracture, the concentration gradient extends upward, so that at later 

times the various pumping cycles begin to pull ever more gas to the surface. Eventually a 

so-called quasi-steady state is achieved during which the amount of subsurface 

contaminant brought to the surface each cycle remains fairly constant. This observation is 

very much consistent with the conclusion of Nilson et al. (1991). Since there is no 

additional source of contaminant in this example, eventually outflows decrease and the 

cumulative outflow line of Figure 4.2 approaches 1 asymptotically. 

4.1.2 General radioactive decay source 

With the addition of radioactive decay to the vertical transport code, contaminant 

removal from the simulated system no longer occurs just due to the physical transport 

mechanisms being modeled. In earlier environmental transport modeling codes, it was 

not uncommon to estimate the subsurface movement of a radioactive contaminant by first 

simulating the transport of a non-decaying contaminant, and then applying a radioactive 

decay correction to the resultant concentration. For the case of modeling an underground, 

time-dependent source, this approach is somewhat unsatisfactory, unless the transport is 

simulated from start to finish by considering different sources at discrete times, and then 

summing the transport from all sources at the end. Obviously this would be an efficient 

approach. 
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Including the effects of radioactive decay in the transport model can be 

implemented in multiple ways; broadly speaking, however, there are two options. First, 

the decay can be instituted directly within the mass conservation equations for transport. 

In this manner, the decay factor occurs as a component of the inhomogeneous coefficient 

F, which incorporates all of the past system knowledge, and the radioactive decay is 

therefore handled implicitly as part of the transport solution. In a second approach, the 

radioactive decay can be applied at the beginning (or end) of each time iteration in the 

simulation to explicitly decay the point-by-point concentrations of the previous system 

state by one time step t. For small enough time steps, these two options were found to 

converge to the same results, as they obviously should. Of the two methods, the first is 

 

Figure 4.2 Cumulative fractional outflow of non-decaying gas overlaid with the 
instantaneous fractional outflow over a roughly 1-year period in early 
simulations with UTEX. 
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obviously more elegant; however, the second offers the capability to explicitly track the 

amount of decay, an advantage that also facilitates modeling the movement of the source 

itself in the case of 133mXe and 131mXe. 

As a first example application of the UTEX code to the problem of modeling the 

transport of the various UNE noble gases, the HEU source term results of Table 2.4-2.6 

were used to determine an estimated activity outflow for 131mXe, 133mXe, 133Xe, 135Xe, and 

37Ar. As before, the modeled system is taken to consist of a total depth of L = 500 m 

below the surface, with an initial source term distributed over L0 = 300 m, leaving 200 m 

of fresh-air buffer above the initial contaminant front. The following physical parameters 

were again utilized: the fracture width and separation is taken to be f = 1 mm and 

m = 1m respectively; values of f = 1 and m = 0.1 for the fracture and matrix porosities 

were assumed, and the matrix permeability was km = 10-15 m2. The barometric pressure at 

the surface was taken to vary harmonically with period T = 200 hours and amplitude 

Δp = 2/30p0 about the mean static pressure p0 = 105 Pa. The dynamic viscosity of air was 

taken to be μ = 2  10-5 Pas. The resulting outflow is summarized in Figure 4.3. 

The effect of the barometric pumping driving force is clearly evident in Figure 

4.3, as the outflows exhibit the characteristic step feature seen without radioactive decay 

in Figure 4.2. The difference in this example is that now the transporting gas isotopes are 

subject to radioactive decay as well as ingrowth from a time-dependent source term. In 

this case, even with source terms that continue adding new concentrations to the system 

for the first few weeks, all four radioxenon isotope outflows have effectively ceased by 

50 days simulated transport. The leakage of 135Xe, despite a total initial inventory of over 

106 Ci, barely reaches an estimated cumulative outflow of 10-20 mBq/m3 by 20 days 

before stopping. This is of course due mostly to the post-UNE radioxenon source term 

(Figure 2.8), in which 135Xe very quickly reaches a maximum within the first day and 
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then rapidly decays with a 9.1 hour half-life. Because of the nature of barometric 

pumping, 135Xe is just too short-lived in the simulations to undergo any substantial build-

up. Both 131mXe and 133Xe have significantly longer half-lives, and therefore represent 

much more likely candidates for subsurface leakage, as depicted in Figure 4.3.  

In the case of 131mXe with a half-life of nearly 12 days, the initial post-UNE 

concentration builds up relatively slowly, coming to a maximum more than 10 days later; 

however, its longer lifetime eventually facilitates a greater movement of the gas towards 

the surface. For 133Xe, the inventory maximum occurs very quickly by comparison, 

however at three orders of magnitude higher concentration, enough of the gas remains at 

later times to allow for substantial barometric pumping upwards to the surface. Also as 

seen in Figure 4.3, 37Ar is simulated to leak from the system in appreciable amounts. 

Although the activated soil concentration of argon is only of the order 103 Ci and does 

 

Figure 4.3 Estimated outflow of radioxenon and soil-activated argon from simple UNE 
transport scenario with smoothly varying atmospheric pressure.  
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not have an additional source component in time, its 35 day half-life is long enough that 

its vertical migration in the system is not greatly inhibited by radioactive decay.  

4.1.3 Initial sensitivity study of radionuclide outflow 

Table 4.1 summarizes a cursory sensitivity study that was conducted on the major 

physical parameters of the UTEX model input using the system configuration outlined 

above as a base case and varying parameters from there. The results presented in the table 

are plotted in the figures of the following pages for all isotopes except 135Xe; this 

radioisotope was not included in the graphical results simply because the resulting 

outflows were typically 15 orders of magnitude smaller than the other four, variations of 

which could not be depicted on the same scale as the other three.    

The first set of data considers variations of the fracture separation, m, the results 

of which are plotted in the top portion of Figure 4.4. The effect of the fracture separation 

is complicated component of the barometric pumping process. On the one hand, smaller 

separations mean that trace gas within the matrix has less far to travel horizontally during 

barometric lows to enter the fracture. On the other hand, however, smaller separations 

mean that the trace gas migrating upwards along the fracture diffuses less into the buffer 

regions of the matrix. This is a very critical feature of the double-porosity model because 

if gas does not seep into the higher matrix levels, then the concentration gradient does not 

stretch upwards and no “ratcheting” effect ensues. The effect of radioactive decay 

complicates this balance even further because it places a time restriction on how long the 

contaminant has to migrate upwards and establish quasi-equilibrium. 
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Table 4.1 Summary of sensitivity study on cumulative post-UNE radionuclide release for 
simple underground transport with smooth atmospheric pressure function. 
The shaded rows are for the initial system configuration that was used to 
produce Figure 4.3. Parameters are varied around these values. 

Physical Parameters Cumulative Outflow at 55 days (Bq/m3) 

m (m) f (m) p/p0 m f 
133mXe 133Xe 131mXe 135Xe 37Ar 

Fracture separation sensitivity      

0.1 0.001 2/30 0.1 1 3.651E-04 1.007E+00 3.425E-02 3.185E-13 9.224E-02 

0.25 0.001 2/30 0.1 1 1.536E-02 4.518E+01 3.552E+00 5.851E-13 4.459E+00 

0.5 0.001 2/30 0.1 1 2.726E-05 2.269E+02 2.439E+01 4.847E-19 2.246E+01 

1 0.001 2/30 0.1 1 8.608E-02 1.022E+03 8.147E+01 4.753E-20 1.033E+02 

2 0.001 2/30 0.1 1 1.536E-02 9.857E+02 8.553E+01 5.853E-24 9.719E+01 

5 0.001 2/30 0.1 1 6.557E-04 1.728E+01 8.023E-02 2.509E-26 1.671E+00 

10 0.001 2/30 0.1 1 2.563E-03 9.215E+01 2.901E+00 1.344E-24 8.432E+00 

Fracture width sensitivity  

1 0.00005 2/30 0.1 1 3.507E-02 7.394E+02 7.379E+01 0.000E+00 6.662E+01 

1 0.0001 2/30 0.1 1 9.782E-02 9.209E+02 6.378E+01 6.076E-21 8.647E+01 

1 0.0005 2/30 0.1 1 5.924E-02 1.184E+03 7.915E+01 1.198E-20 1.127E+02 

1 0.001 2/30 0.1 1 8.608E-02 1.022E+03 8.147E+01 4.753E-20 1.033E+02 

1 0.002 2/30 0.1 1 9.203E-02 1.023E+03 8.267E+01 5.645E-20 1.008E+02 

1 0.005 2/30 0.1 1 9.070E-02 1.124E+03 7.827E+01 6.359E-20 1.013E+02 

1 0.01 2/30 0.1 1 8.202E-02 1.071E+03 7.732E+01 5.134E-20 1.037E+02 

1 0.05 2/30 0.1 1 8.030E-02 1.025E+03 8.341E+01 1.483E-20 9.246E+01 

Pressure variation sensitivity  

1 0.001 5/90 0.1 1 1.009E-03 2.307E+02 4.492E+01 1.712E-29 2.291E+01 

1 0.001 2/30 0.1 1 8.608E-02 1.022E+03 8.147E+01 4.753E-20 1.033E+02 

1 0.001 7/90 0.1 1 5.820E-01 2.660E+03 9.990E+01 7.236E-16 2.599E+02 

1 0.001 8/90 0.1 1 2.084E+00 4.694E+03 1.638E+02 1.623E-13 4.624E+02 

Bulk matrix porosity sensitivity  

1 0.001 2/30 0.01 1 2.276E-01 1.586E+03 1.105E+02 8.761E-18 1.446E+02 

1 0.001 2/30 0.05 1 1.567E-01 1.258E+03 1.002E+02 1.589E-19 1.249E+02 

1 0.001 2/30 0.08 1 1.104E-01 1.101E+03 9.544E+01 5.922E-23 1.009E+02 

1 0.001 2/30 0.1 1 8.608E-02 1.022E+03 8.147E+01 4.753E-20 1.033E+02 

1 0.001 2/30 0.2 1 6.195E-03 5.978E+02 6.294E+01 7.169E-32 5.392E+01 

1 0.001 2/30 0.3 1 1.012E-03 1.922E+02 8.438E+00 1.881E-34 1.757E+01 

1 0.001 2/30 0.5 1 9.151E-09 2.055E-05 1.513E-08 1.960E-38 2.026E-06 

Fracture porosity sensitivity  

1 0.001 2/30 0.1 0.5 3.323E-25 1.123E-20 1.665E-18 1.484E-53 1.122E-21 

1 0.001 2/30 0.1 0.7 1.037E-05 8.090E-01 1.899E-03 1.024E-41 7.435E-02 

1 0.001 2/30 0.1 0.9 6.296E-03 4.551E+02 5.489E+01 1.373E-27 4.396E+01 

1 0.001 2/30 0.1 1 8.608E-02 1.022E+03 8.147E+01 4.753E-20 1.033E+02 
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Figure 4.4 Plot of simulated 55 day radionuclide outflows for various values of the 
fracture separation and width parameters δm and δf respectively and other 
input values held constant. 
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With regard to the results in Figure 4.4, fracture separations below 1 m lead to a 

decrease in the outflow at 55 days, attributable to the lack of effective seepage distance in 

the buffer regions. At very small fracture separations on a scale similar to the fracture 

width (1 mm here), the numerical solution begins to break down as huge velocity 

gradients surpass the capability of the FRAM scheme to eliminate spurious oscillations. 

At slightly larger values than 1 m, the effects of radioactive decay begin to outweigh the 

benefit of fracture-matrix diffusion, as gas that migrates deeper into the bulk medium will 

be more likely to decay before being drawn back out. Beyond roughly 5 m, effect of 

further decreasing the fracture separation is diminished because will only penetrate so far 

into the matrix before it can no longer be expected to contribute to surface outflow at 

later times. 

In contrast, variation of fracture width, f, which is depicted in the lower plot of 

Figure 4.4, exhibits much less effect on the resulting outflow of all three radioxenon 

isotopes. This is somewhat expected because even though a larger width can cause faster 

vertical flow along the fracture, these effects will be countered by a subsequent decrease 

in the rate of fracture-matrix diffusion, which tends to lessen the overall outflow. In 

effect, movement of gas upwards along the fracture, at least in the simulation set 

considered here, is not the limiting factor in the effectiveness of barometric pumping.  

Increasing fracture width so large that diffusive mixing through the fracture volume 

cannot be assumed would effectively reduce diffusion-exchange of gas with the 

surrounding bulk medium, and therefore inhibit the effects of barometric pumping. This 

case, however, was not considered here. At very small fracture widths, the volume of gas 

migrating along the fracture will eventually grow small that surface transport cannot 

occur. The beginning of this is apparent in the leftmost data points of Figure 4.4.  
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Figure 4.5 Plot of simulated 55 day radionuclide outflows for various values of the bulk 
matrix and fracture porosity and other input values held constant. 
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The effect of varying the matrix porosity m is shown at the top of Figure 4.5 and 

shows a relatively easy to explain correlation. The net effect of increasing the matrix 

porosity is that pressure waves extend increasingly far into the matrix, and subsequently 

horizontal advection essentially washes out the fracture-matrix seepage mechanism 

required for the barometric “ratcheting” effect. Beyond porosities of 0.3 to 0.5, gas that 

manages to migrate into the bulk medium is easily removed on subsequent pressure 

highs, so that gas essentially move in and right back out down the fracture. This enhanced 

breathability prevents substantial buildup of concentration in the higher system region, 

thus inhibiting overall outflow at later times. Decreasing the fracture porosity f below 

1.0 has an equally decided effect on the overall outflow, as shown in the lower plot of 

Figure 4.5. The net result of a lower porosity in the fracture is that a smaller volume of 

gas is available for both upward transport toward the surface as well as fracture-matrix 

diffusion exchange. Additionally, the lower porosity increases the speed with which 

fracture pressures are equalized, resulting in a diminished flow velocity in response to 

pressure lows at the surface.  

Figure 4.6 shows the results of varying the amplitude of the pressure variations. 

Given that the entire model is based on transport driven by pressure gradients, increasing 

the strength of the variations has the obvious effect of drawing out more of the 

contaminant. Of all the parameters of variation considered in the sensitivity study, 

variation of the pressure amplitude seems to have the most direct, and profound, effect on 

the resulting isotopic ratio of cumulative radioxenon and argon outflow. This is explored 

in more detail in the next section, in which a true atmospheric pressure history is used to 

drive the system in place of the smooth sinusoidal one considered here.  
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4.2 UTEX MODELED XENON ISOTOPIC SENSITIVITY STUDY 

Much of the initial transport simulations with the earliest version of the UTEX 

model presented in the previous section was conducted largely as part of a Master’s 

project found in Lowrey (2011). Following this work, the transport code underwent 

significant rewrite, modularization and general efficiency improvement as well as 

verification to bring it more in line with its current state and capabilities. As the focus of 

UTEX modeling has always been on an examination of the potential for geologic 

transport to alter isotopic ratios of hypothetical UNE noble gas, the first task considered 

by the revamped model was a large scale sensitivity study to look at how varying the 

major geologic input parameters can result in fluctuations in the isotopics of radioxenon.  

 

Figure 4.6 Plot of simulated 55 day radionuclide outflows for various values of the 
atmospheric pressure amplitude and other input values held constant. 
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4.2.1 Simulation input 

One of the improvements to UTEX that was made in the vetting phase of work 

was the ability to incorporate an arbitrary, user-supplied atmospheric pressure history to 

drive the advective transport within the system. In considering this transition and the 

potential transport effects that can result, a couple of points should be made about the 

assumption of a simple harmonic pressure variation. First, the nature of pressure-

dependent bulk transport of gas in the subsurface (advection) is due to the existence of 

pressure gradients that develop in the system pressure response. The smooth variation of 

a sinusoidal atmospheric pressure approximation induces a similarly smooth response in 

the geological system, as can be seen in Figure 4.1, where pressure gradients arise as a 

result of the attenuated and time lagged response at different points in the system. A true 

atmospheric pressure history is not typically smooth even during periods of relatively 

stable pressure. This difference is certain to induce larger gradients in the system. 

Second, the amplitude of the simulated sinusoidal pressure variations corresponds to very 

large fluctuations in pressure that would be representative of unusual events such as large 

thunderstorms, etc. Together, these two points make the results presented in 4.1.3 perhaps 

representative of the conceptual effects of changing atmospheric pressures, but not 

directly indicative of real world scenarios. 

The atmospheric pressure history adopted as input for UTEX simulations of UNE 

gas transport is shown in Figure 4.7. This pressure history was compiled from 1-hour 

resolution atmospheric data at Mercury, NV was linearly-interpolated within UTEX 

preprocessing to provide pressure data at arbitrary time step resolution. Also shown for 

comparison is an example smooth sinusoidal pressure history as might have been 

assumed in simulations of the previous section. The mean static pressure line in the figure 

corresponds to the mean of the “real pressure” date. Clearly the real pressure example is 
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far from smooth; the largest fluctuations appearing in Figure 4.7 are of the order 1-2% 

and occur over several days while smaller variations of a fraction of a percent can occur 

hourly. The effect of real barometric fluctuations on driving transport in a fractured 

system is much more complicated and as well be shown, more interesting with regard to 

effects on UNE gas isotopics. 

Given the variability of geologies worldwide, selection of appropriate geologic 

test cases is somewhat arbitrary and difficult to define. However, since a great deal of 

work has been done to characterize the geology of the Nevada Test site (NTS) and it is 

obviously relevant to the present topic, available NTS data was used to make a general 

characterization of potential UNE testing environments (DeNovio et al., 2005; McCord, 

 

Figure 4.7 Plot of the atmospheric pressure history compiled from real data at Mercury, 
NV utilized as input for present and subsequent UTEX simulations 
presented in this work. For comparison, overlaid is a smooth, sinusoidal-
varying pressure history like that used in previous simulations. 
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2007). Ranges for the major physical parameters that serve as input into the UTEX model 

are summarized in the first data column of Table 4.2. The second column denotes the 

chosen parameter values utilized within the UTEX sensitivity study that follows. 

  

 

4.2.2 HEU source transport results 

The atmospheric pressure history and parameter space shown in Figure 4.7 and 

Table 4.2 respectively were used to simulate transport in UTEX of the source term 

defined by fast pulse reactor fissioning of highly enriched uranium (Tables 2.4-2.6). This 

calculated source term was initially distributed in a “halo region” of thickness 200 m 

located at a system depth corresponding to the “detonation depth” parameter of Table 4.2. 

Simulations with UTEX explicitly tracked the radioxenon concentrations at each point in 

the spatial mesh and quantities which reached the upper boundary of the system were 

assumed to escape the medium and diffuse into the atmosphere. These simulated 

outflows, no longer subject to isotopic fractionation in the geologic medium, were 

“collected” and used to evaluate the evolution of radioxenon ratios that comprise the 

hypothetical event's "signature." 

Table 4.2 Generalized geologic parameter ranges from the Nevada Test site considered 
for the geologic parameter sensitivity study of UTEX simulated transport of 
UNE noble gas (DeNovio et al., 2005; McCord, 2007). 

 NTS Geological Range Parameter Space 

Detonation Depth (m) 450-600 [ 450, 525, 600] 

Matrix Porosity 0.01-0.05 and 0.35-0.45 [0.01,0.05,0.1,0.3,0.37,0.45] 

Matrix Permeability (m-2) 1E-17 to 1E-15 [1E-17, 1E-16, 1E-15] 

Fracture Spacing (m) 1.0-15.0 [1.0,2.5,5.0,10,15] 

Fracture Width (mm) 0.005-1.5 [0.01, 0.1, 1.0] 
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Figure 4.8 shows an example simulated radioxenon and 37Ar release history 

resulting from UTEX simulation of transport over 55 days with one set of values from the 

parameter space defined in Table 4.2. The effects extended pressure lows in ratcheting up 

the radionuclide concentration are obvious in the plot. All the radioxenon isotopes 

(except short-lived 135Xe) reach a maximum removal concentration following pressure 

lows between 20 and 30 days. 37Ar, which is not continuously produced from parent 

decay, builds up much more efficiently than the shorter-lived radioxenon isotopes. Past 

30 days, the concentration of 37Ar releases falls more slowly than xenon. Simulated 

maximum concentrations of 37Ar leakage are an order of magnitude smaller than 133Xe 

but an order of magnitude higher than the 131mXe peak. This release estimate is consistent 

with Haas et al. (2010) and Carrigan & Sun (2012). 

 

Figure 4.8 Simulated outflow curves over 55 days for four radioxenon isotopes as well as 37Ar for 
one set of values in the sensitivity study parameter space. Note that 37Ar, with a 
much longer half-life than the longest-lived xenon isotope, typically falls much 
slower between release spikes. 
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A total of 990 simulations covering various permutations of the values in the 

parameter space defined in Table 4.2 were conducted. Transport was modeled over 55 

days and the resulting 1-day sampled radioxenon leakage ratios for the four isotopes of 

greatest concern are plotted on a multi-isotopic ratio correlation plot, as shown in Figure 

4.9. For reference, the associated atmospheric pressure history is plotted on a horizontal 

axis to correspond roughly to the progression of time in the MIRC plot. While the 

variation of ratios seen in this plot as well as their relation to bounding cases will be 

discussed further in Section 4.3, some immediate points can be made about the results 

presented in this plot. 

 All of the simulations of the sensitivity study were run from the same initial source 

term. Thus, if the transport processes had no effect on the isotopics, one would expect 

 

Figure 4.9 Multi-isotopic ratio correlation (MIRC) plot with 1-day sampled simulation data from 
an HUE source term transport sensitivity study. Data points are color-coded 
according to the number of days post-detonation the sample was removed from the 
system. 
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the simulated curves to follow a single line of decay on the MIRC plot. Clearly this is 

not the case. 

 While a large portion of the data points fall within the non-fractioned and fully-

fractioned13 decay "bounds" (note, many such cases overlap in the plot and appear as 

single points), roughly 15% of the estimated outflow points fall outside the bounded 

area traditionally associated with a nuclear explosion signature. 

 The proposed addition of a new "iodine source term" bounding line catches the 

majority of points outside traditional bounds. This is further discussed in the 

following section. 

The results of this sensitivity study for an HEU fast pulse fission burnup source 

term has been published in Lowrey et al., (2013). It is important at this point to comment 

that isotopic ratios of xenon resulting from numerically simulated transport are easy to 

calculate regardless of the order of magnitude of the actual concentrations being 

considered. In other words, many of the simulated ratios appearing in Figure 4.9 certainly 

correspond to "non-detectable" points in the sense that 133mXe and 135Xe can have 

concentrations simulated to be orders of magnitude smaller than detection limits. 

Additional MIRC plots of the simulated radioxenon releases are shown in Appendix D. 

4.2.3 Pu source parallel study 

Parallel to the HEU source term used in the above sensitivity study, a Pu source 

term simple faster reactor burn was also calculated, results of which were also given in 

Table 2.4-2.5 Mostly for the sake of completeness and to further demonstrate the 

potential ambiguity that underground transport processes can induce in possible UNE 
                                                 
 
13 The “non-fractioned” decay case corresponds to xenon ingrowth from iodine and precursors 
continuously building into the inventory while “fully-fractioned” assumes a removal of xenon precursors 
from the picture so that xenon inventories are determined only according to xenon decay rates. 
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explosion signatures, a large portion of the HEU sensitivity study was repeated with the 

slightly different Pu fast pulse fission source term. Generally speaking, transport effects 

on isotopic variations should affect xenon gas coming from a plutonium source the same 

way as from an HEU source - the net result of the transport is essentially the smearing of 

the xenon signatures. 

For the case of plutonium, an additional consideration was made for the possible 

xenon contribution from the spontaneous fission of 240Pu in the leftover debris. An 

estimate of such a source was made by simply assuming no burnup of the initial 240Pu. 

The half-life of the nuclide is 6564 years and has spontaneous fission branching ratio of 

5.7E-6%. The result is a relatively constant radioxenon production source from 

spontaneous fission that is many orders of magnitude smaller than the initial post-UNE 

amount and only slightly higher than the general range of radioxenon background levels, 

which are discussed in-depth in a later chapter on soil-gas background. This spontaneous 

fission was added to the UNE-produced iodine source term. 

Results of the parallel Pu sensitivity study, which covered half the number of 

simulations depicted in Figure 4.9 are shown in Figure 4.10. Clearly, the nature of 

transport effects are essentially the same - transport processes can alter the UNE source 

signature from that which would be expected if xenon isotopic were only being 

determined by radioactive decay. The addition of spontaneous fission to the source 

creates even further ambiguity in the original source signature behind Figure 4.10; the 

later time swings in pressure clearly visible in Figure 4.9 still appear in Figure 4.10, but 

the additional spread in the data points make it apparent. This only further emphasizes the 

main point that subsurface transport processes have the potential to smear underground 

radioxenon signatures beyond the bounded areas traditionally associated with 

underground nuclear explosions. 
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4.3 ISOTOPIC RATIOS DISCUSSION 

Looking at the very busy plots of Figure 4.9 and Figure 4.10, it is clear that the 

influence of subsurface transport on radioxenon signatures is complex and not entirely 

transparent. In this section, the mechanisms that determine the various bounding cases 

and induce the isotopic fluctuations seen in Figure 4.9 are discussed. Largely speaking, 

the wide range in isotopic ratios can be explained by the source mixing that results from 

variations in transport rates and to a much lesser extent the differential transport of the 

various xenon isotopes. 

 

Figure 4.10 Multi-isotopic ratio correlation (MIRC) plot with 1-day sampled simulation data 
from Pu source term transport sensitivity study. Data points are color-coded 
according to the number of days post-detonation the sample was removed from the 
system, as in Figure 4.9. 
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4.3.1 Bounding cases 

The isotopic signal seen above ground is the result of xenon that was produced 

directly by the fission event and a time dependent source term that results from the decay 

of iodine precursors.  Traditional underground nuclear explosion signatures are typically 

assumed to fall somewhere between non-fractioned and fully-fractioned decay bounds. 

The former refers to a decay case in which xenon ingrowth from iodine and precursors 

factors into the inventory while the latter assumes a removal of xenon precursors from the 

picture so that xenon quantities are determined only according to xenon decay rates. The 

most notable difference between "new" and "old" xenon in these respective cases is 135Xe 

- in the non-fractioned decay scenario, the much shorter-lived 135Xe is more noticeably 

propped up through parent nuclide decay than the other isotopes. In simple, continuous 

transport scenarios without changes in flow direction, a discrete sample of radioxenon 

from a UNE source, once removed from iodine, will decay according to the fully-

fractioned case. Including more realistic transport perturbations potentially induces more 

interesting signature changes.  

Low atmospheric pressure spikes can have a significant effect by quickly drawing 

gas to the surface and partially depleting the xenon inventory in parts of the underground 

environment. The ratios of radioxenon isotopes emitted above ground after such low 

pressure periods in the short term would then be more heavily influenced by xenon 

coming from radioiodine decay in those regions. This xenon removal scenario is 

illustrated in Figure 4.11. An analytical examination of this effect and how it leads to a 

new iodine ingrowth boundary line is presented in Figure 4.12: 
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Figure 4.11 Illustration of localized subsurface radioxenon depletion that can potentially 
result in a xenon isotopic signature dominated by iodine ingrowth. 

 

Figure 4.12 Analytical consideration of the effects of temporary xenon depletion on 
resulting radioxenon signatures for three cases of iodine and non-purged 
xenon ingrowth from HEU source term. 
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 The yellow dashed line corresponds to radioxenon ratios that result from 

instantaneous ingrowth of xenon from iodine. 

 The light blue decay curve corresponds to a situation in which 100% xenon inventory 

is purged at three different times in the transport, and xenon builds back in after those 

times. Note that immediately after purging, the xenon ratios lie on the dashed yellow 

iodine line. 

 The purple and orange paths represent cases where xenon is purged "locally" near a 

fracture, and is subsequently replaced by both iodine ingrowth as well as movement 

of "unpurged" xenon gas in the surrounding media, as illustrated by Figure 4.11. 

What results is a spike in the signature towards the dashed yellow iodine line 

followed by a movement of the decay lines back towards the more traditional UNE 

signature area. 

Figure 4.9 shows several instances of this xenon depletion effect (most notably 

beginning around day 38) where the simulated xenon ratios are pushed toward the signal 

that would come solely from decay of radioiodine precursors (indicated by the dashed 

yellow line). In situations such as these, monitoring of down-wind air samples (which 

would detect the purged xenon) and on-site sampling (which would detect xenon from 

recently decayed iodine) could produce very different signals. With respect to simulated 

transport in general, after 10 days post-detonation, none of the simulated data coincide 

with the radioxenon signal from a commercial light water reactor. So even though the 

proposed iodine boundary has implications for the usefulness of proposed discrimination 

lines, it would still be easy to rule out power reactor sources for the situations simulated 

during an on-site inspection if all four radioxenon isotopes of interest are measured.  
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Xenon ratios that fall to the left and right of the iodine and fully-fractioned lines 

can be explained in terms of differential transport. Decreasing atmospheric pressure will 

increase the rate of xenon movement into fractures as well as its upward advection within 

them. The individual xenon isotopes can be thought of as comprising separate, 

overlapping plumes. The rate at which isotopes diffuse through the bulk geology is 

inversely proportional the square root of their mass (Bird et al., 2006).  As a result, 

lighter xenon isotopes will travel faster than do the heavier ones. While the difference in 

diffusion rates is small, in certain conditions it can cause the leading edge of the isotope 

plumes to reach the surface at slightly different times. Because isotope concentrations can 

vary by orders of magnitude across a plum’s leading edge, this can significantly skew the 

isotope ratios, pushing the 133mXe/131mXe and 135Xe/133Xe signals to the left of the iodine 

line. Increases in pressure would correspondingly force gases back down the fractures. 

Rapid fluctuations in atmospheric pressure can then set up a situation where lighter 

isotopes are preferentially depleted from the geology, which would push the 

133mXe/131mXe and 135Xe/133Xe signals to the right of the fully-fractioned lined. In both 

cases the effect would be most pronounced during the first few days after a detonation, 

when the location of an underground plume’s leading edge is most important, which is 

what is seen in Figure 4.9. 

4.3.2 Parameter sensitivity 

An evaluation of the modeled HEU source radioxenon isotopic ratios sensitivity 

on geologic parameter values was made in Lowrey et al., (2012) . To evaluate the effect 

of varying each individual geologic parameter on the resulting fractionation in the HEU 

source sensitivity study, the isotopic ratios 133mXe/131mXe and 135Xe/133Xe were tabulated 

at regular intervals for each value of the parameters in question while holding all of the 
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others constant. A pseudo variance factor was then calculated for each set of data 

describing the (log) average spread in simulated ratios that resulted from considering the 

variation of only one parameter while holding all others fixed. This deviation from the 

log average ratio was calculated for each one-minute time step and then averaged over 

the full 55-day simulation time for each of the simulations conducted in the geologic 

sensitivity study. This allowed for a large-scale survey of the variability in isotopic ratios 

resulting from 990 parameter permutations and the determination of their degrees of 

inter-dependency. 

An example dependency comparison is provided in Figure 4.13 and Figure 4.14 to 

illustrate the variance concept described above. Figure 4.13 shows the simulated 55-day 

radioxenon ratios plot for three different values of the total depth parameter, L, while 

holding all other values fixed. In this case, the effect of varying the total system depth 

was very small, as almost no variation in xenon ratios is seen in Figure 4.13; the 

calculated variance in the radioxenon ratios in this case was 0.0039. Figure 4.14 shows 

the effect of varying the bulk matrix porosity, ϕm, while holding all other parameters 

fixed. Isotope fluctuations in Figure 4.14 are clearly evident, and it can be concluded that 

the porosity is having a considerable effect on the radioxenon ratios that leak from the 

system following transport. The variance for the scenario in Figure 4.14 is 2.2162, much 

higher than that of the ratios plotted in Figure 4.13. These illustrations mark only two 

cases where a single parameter is varied while others are held constant. Additionally, the 

same can be done by varying multiple parameters to gain insight into correlation of 

parameters. 
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Figure 4.13 Very small radioxenon fractionation dependence on total system depth, L. 
Other parameters are held fixed. This set of data had a small variance of 
0.0039. 

 

 

Figure 4.14 Significant radioxenon fractionation dependence on bulk matrix porosity, ϕm. 
Other parameters are held fixed. This set of data had a much larger variance 
of 2.2162 as compared to that of Figure-2 
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The results of the variance factor calculations for all 990 simulations run for this 

study are summarized in Table 4.3. The mean variance column of Table 4.3 lists the log 

average spread in radioxenon ratios on a four isotope MIRC plot like Figure 4.13 and 

Figure 4.14 that results from considering all cases where four of the input parameters are 

held fixed while one is varied over its parameter space. By this definition, a parameter 

that has no effect on the resulting isotopic ratios of radioxenon leakage would have a 

corresponding mean variance of zero. From these results, the parameters δf, δm, ϕm, and km 

all show significant effect on the radioxenon ratios; for a given set of fixed values, 

varying the lower system depth, L, shows a much smaller effect on the variability of 

ratios.  

A few physical insights can be easily drawn from these results. For instance, the 

fracture in these simulations is taken to be a very narrow open channel, so pressure 

variations at the top of the system propagate down more rapidly than they do laterally 

from the fracture to the deeper parts of the less porous matrix medium. As a result, ratio 

variability is more sensitive to the lateral fracture spacing δm than the system depth L. 

Also, varying the matrix porosity over nearly two orders of magnitude has a substantial 

effect on radioxenon ratios – as the bulk matrix is essentially opened up, transport 

everywhere in the system becomes more homogeneous and differential transport rates 

less important. The result is a less fractionated radioxenon signature, Figure 4.14. 

Variation of the permeability, km, has a similar effect. 
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The mean variance summarization of the 990 simulation sensitivity study in 

column 2 of Table 4.3 allows for a coarse generalization of isotopic variability. However, 

it also oversimplifies the nature of the transport mechanics by ignoring the fact that some 

parameters are more likely to be important in certain scenarios while maybe not so much 

in others. To begin to gain insight into the inter-dependency of the different parameters 

and how they can influence the resulting radioxenon ratios, the variances calculated for 

each test parameter were analyzed for correlation with the other parameters. These results 

are summarized as p-values in Table 4.3 for the likelihood that the observed mean 

deviation could be expected if the two parameters were indeed uncorrelated (the null 

hypothesis for a χ2 test). The bolded p-values in the table are "statistically significant" 

and correspond to those column parameters that apparently affect the amount of ratio 

variability caused by changing the value of the row parameter.  

For example, Figure 4.15 shows the averaged fractionation variance of the 

parameter δm for the six different fixed values of matrix porosity ϕm. This particular 

choice appears to have a very strong correlation and accordingly had a p-value in Table 

4.3 of <0.001. It is important at this point to note that the strength of the correlation 

implied by the p-values does not necessarily reflect the size of the mean variance of that 

Table 4.3 Concise summary of results for the variance of radioxenon ratios for different 
geological parameters. 

 mean 
variance 

p-values 
on correlation of column variance with row parameter 

  L δf δm ϕm km 
L 0.0535 - 0.523 0.091 0.006 0.003
δf 0.4124 0.311 - 0.415 0.891 0.341 
δm 1.6313 0.039 0.497 - <0.001 0.049 
ϕm 0.5223 0.009 0.599 <0.001 - 0.032
km 0.8247 0.005 0.672 0.052 0.021 - 
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parameter in column 2 of Table 4.3. This is most relevant for the case of the system floor 

parameter L - while the variability of the radioxenon ratios with changing L appears to be 

correlated with the variability of several other parameters, the size of the variance is 

nevertheless small. Within this sensitivity study, varying the depth L of the emplaced 

halo contaminant has the least effect on the resulting isotopic ratios of xenon leaking 

from the surface. In the case of the fracture width δf , while its value apparently does 

influence ratios, this variation is not strongly correlated with values of the other 

parameters. 

  

 

 

 

 

Figure 4.15 Averaged ratio variance of the parameter δm for the six different fixed values 
of matrix porosity ϕm suggesting a very strong correlation. The "error bars" 
represent standard error in the calculation of the means. 
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4.4 SAMPLING CONSIDERATION 

In the preceding results, the UTEX model simulates the act of sampling in the 

simplest, most non-invasive way. Gas is allowed to transport to the top of the system 

where upon it is “sampled” by being tabulated and removed from the system at each time 

step – material that reaches the top is therefore assumed to escape into the atmosphere 

and is lost from the system. These releases from the system are summed in discrete time 

bins to simulate a sample over that time. In reality, soil-gas sampling can be conducted in 

different ways, some quite intrusive to the point that the method of collection could even 

alter the resulting fractionation. This specific scenario is considered in Chapter 7 

dedicated to on-site inspection modeling. In this section, a quick examination is made of 

the additional fluctuation in isotopic ratios that can result by considering the continued 

decay of gas even as it is being sampled. Also, results of a smaller study similar to that 

presented in 4.3.2 is presented to look at the variation of radioxenon isotopic ratios with 

the position of the sampling point near the top of the UTEX modeled system.  

 

4.4.1 Sample decay correction 

For initial simplification and flexibility, radioactive gas outflows in the early 

UTEX simulation results were essentially frozen in time upon removal from the system. 

As a result, the effects of further decay and temporal mixing were ignored. Intuitively, 

the error introduced by not simulating sample decay should increase as sampling times 

increase and radioisotope half-lives decrease. To obtain detectable amounts of 

radioxenon, typical high-volume air sampling times are in the range of 12 to 24 hours 

(Carrigan & Sun, 2011).  
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Correcting for the continued decay of sampled radioxenon is easily fixed in a 

post-simulation process and for the most part was found to not significantly affect the 

simulated radioxenon isotopics. The results of the original HEU source subsurface 

transport sensitivity study presented above and appearing in Lowrey et al., (2012) and 

Lowrey et al., (2013) were re-analyzed correcting for sample decay, and showed no 

significant difference. Of the radioxenon isotopes simulated in UTEX transport, only 

135Xe with a 9-hour half-life undergoes substantial decay within a 1-day sampling 

window. On the four-isotope log-log MIRC plots largely considered in this chapter, the 

partial decay of sampled 135Xe will have the effect of slightly shifting ratio curves down 

the y-axis. Figure 4.16 shows an example of this correction and its effect on the ratio 

curve, which basically adjusts the previously overestimated 135Xe. The degree of this 

 

Figure 4.16 An example of before and after sample decay correction for a single instance 
of UTEX transport within the larger geologic parameter sensitivity study. 
Most importantly is that the non-corrected curve overestimates short-lived 
135Xe in the sample. 
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overestimate in the xenon leakage estimates is dependent on the timing of the largest 

outflows in the simulated sample - if a large outflow occurred early in the sampling 

window, the decay of the sample is more noticeable than if that spike occurred near the 

end of the time window. 

4.4.2 Sample position sensitivity 

Lastly, the variability of the radioxenon ratios as a function of sampling depth and 

between-fracture position was examined. The ratios were calculated as a function of time 

at depths between 0 m to 27 m as well as located at points corresponding to 0.25δm, 

0.50δm and 0.75δm within the bulk matrix medium, where δm is the fracture spacing14. The 

dependency on depth and position for a given set of geologic parameters was also 

evaluated. 

A plot of the results of the fractionation variances for sampling the radioxenon 

ratios at different depths below the surface and positions within the bulk matrix medium 

is given in Figure 4.17. Two things are immediately evident from this plot. First, perhaps 

surprisingly, the inter-fracture sampling position dependence of the ratios is greater than 

the sampling depth dependence. Second, both dependencies are apparently very small - 

compared to the geological parameter sensitivities considered in the previous section, 

sampling depth and position have only a minute effect on altering the sampled ratios of 

radioxenon. Figure-7 shows multi isotopic ratio correlation plots for typical fractionation 

due to varying the position and depth of sampling over the ranges considered in this 

study. 

                                                 
 
14 Since UTEX actually models δm/2 width slabs of bulk matrix material, the position points are really 
fractions of δm/2. 



 121

 

Figure 4.17 Plot of the radioxenon ratio variances resulting from considering samples at 
points corresponding to different sampling depths and lateral positions 
within the bulk matrix material for 102-simulation set of geologic 
parameters. 

 

Figure 4.18 Examples of the small fractionation changes resulting from simulating 
sampling of radioxenon ratios at different lateral positions within the matrix 
and at different depths below the surface. Note the scales are smaller than 
previous multi isotopic ratio correlation plots so that the smaller differences 
are visible 
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4.5 CONCLUSION 

It is clear from the UTEX simulations of the sensitivity studies presented here that 

geological transport of xenon gas can significantly affect the isotopic ratios that are used 

to determine whether or not a clandestine nuclear test has taken place. While much of the 

simulation data fall within the traditionally expected bounds for an underground nuclear 

explosion, there are many instances in which radioxenon isotope ratios have been 

simulated to fall well outside of the standard domain. Verification of an underground 

nuclear explosion test under the CTBT can only be done through the detection of 

anthropogenic isotopes. The present work has shown that the effect that geological 

transport has on radioxenon isotope ratios should be considered when using these data to 

determine whether or not a test has taken place.  It remains very important that all but a 

small fraction of the simulated radioxenon isotope ratios fall between the bounds 

resulting purely from decay of radioiodine and radioxenon produced only in the fission 

event. The variability of radioxenon ratios that sit between the proposed radioiodine and 

the non-fractioned signature bounds should be considered carefully when evaluating data 

and assigning possible source of emanation. 

With respect to the effect of geologic transport on radioxenon isotopics, several 

broad conclusions can be drawn from the results presented here. First and foremost is that 

radioxenon fractionation due to geologic transport is a complicated phenomenon. Of the 

physical parameters considered in this study, it is evident that the presumed fracture 

width, average fracture separation, bulk matrix porosities and permeabilities all can have 

very strong effects on the radioxenon isotopic ratios that transport through the system, 

while the total assumed system depth within the parameter space considered appears to 

have a lesser generalized effect. This complex influence is especially evident from the p-
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values of Table 4.3, which suggest that many of the xenon ratio changes due to one 

variable are correlated to changes in other variables as well.  

The effect of varying the sampling depth down to 27 m and the position within 

the bulk matrix medium are less compelling, but perhaps not that surprising.  The total 

system depth was varied from 450 m to 600 m, and the variable sampling depth went 

down to only 27 m – a small fraction of the total depth.  The small changes in sampling 

depths represent only a fraction of the total system depth and that such small changes 

would have only a minor effect on the observed ratios makes intuitive sense. The effect 

of altering the sampling position between fractures is harder to examine because the 

fracture separation distance was a major parameter being varied in this study.  Generally, 

points farther from the fracture exhibit a more suppressed response to pressure variations 

at the surface. An in-depth study modeling a more realistic sampling scenario in which a 

bore hole is made in the medium and a pump is used to collect samples is made in 

Chapter 7. 

 



 124

Chapter 5. Geologic Considerations 

Beyond characterization of the physical parameters of an assumed homogenous 

environment, few assumptions have been made thus far in UTEX modeling about the 

geology in which a radionuclide source is emplaced. The benefit of previously assuming 

very simplistic system geology with homogeneous physical characteristics is that it more 

easily allows for an examination of the sensitivity of radionuclide transport to the various 

parameters that define the system. As has already been demonstrated, even with a 

homogeneous geologic model, isolating and understanding the sensitivities of individual 

parameters is a difficult enough task. Including multiple geologic layers compounds this 

complexity, but the reality is that true geologies are stratified and inhomogeneous. The 

capability to model such in UTEX is thus an important step forward. Additionally, the 

actual effect an underground nuclear explosion (UNE) has on the surrounding geology 

can substantially affect the distribution of radionuclides within the medium. An 

examination of this is also made and integrated into the UTEX modeling capabilities.  

 

5.1 OVERVIEW OF UNE IMPACT IN GEOLOGY 

The true relevance of the UTEX model is in considering the transport of well-

contained, deep underground nuclear explosions. "Well-contained" in this context refers 

to the absence of significant venting of radionuclide gas and particulates from the ground, 

even though it may be possible for some surface effects of the UNE to be noticeable. This 

does not preclude the model’s relevance to situations in which an immediate radionuclide 

venting, potentially large enough to be noticed in stations of the International Monitoring 

System (IMS), occurs and is followed by a collapse of rock that subsequently creates a 

contained underground environment. The point is that the barometric pumping of 
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subsurface gas through micro-fracture networks in a geologic system, as modeled in 

UTEX, works to bring UNE evidence to the surface on a timescale of weeks; if quicker 

transport pathways are available, the delayed effects of barometric pumping might be 

suppressed or otherwise trumped. 

The most immediate effect of a nuclear explosion in the deep underground is the 

creation of an immensely hot and high-pressure bubble of gas that rapidly expands from 

the explosion point. Subsequently, a massive shock wave forms that propagates in all 

directions, crushing or fracturing the rock it traverses. Within the first second following 

detonation, the pressure of the gas bubble forms an explosion cavity lined by molten 

rock. In the time that follows, the extreme temperatures and pressures begin to dissipate. 

The molten rock within the cavity cools and solidifies at the bottom of the cavity 

(Glasstone & Dolan, 1977). As the pressure decreases in the cavity, the rock overburden 

can collapse the cavity roof. Further fractured rock above that can likewise crumble, 

leaving what is referred to as a "chimney" of broken rock or rubble. Assuming the surface 

is not breached by the progression of falling chimney collapse, an empty void space is 

left at the top of the chimney whose volume is of the same order as the initial cavity 

(multiplied by porosity of the filling rubble) (Sweeney, 1999). An illustration of these 

concepts is shown in Figure 5.1 (Glasstone & Dolan, 1977).   

The net geologic effect of a deep UNE is the massive fracturing of the 

surrounding medium. The scale of this impact is, of course, dependent on the size of the 

detonation, but according to Glasstone and Dolan (1977) the height of the rubble chimney 

as well as the radius of crushed and fractured rock can extend more than a hundred 

meters for small 1 kton-scale UNEs. Even if the rubble chimney fails to extend all the 

way to the surface and the UNE is technically well-contained, new transport pathways 
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through the fractured rock are created, thus enhancing the likelihood of eventual gas 

leakage by barometric pumping.   

In addition to the geological effects, the high pressure in the early cavity can 

inject UNE gases directly into the surrounding crushed and fractured regions. Within a 

period of hours to the first day or two, this cavity over-pressurization dissipates, but 

Carrigan & Sun have conducted studies indicating that the large thermal gradients 

resulting from the UNE may have not. In this case, they predict that subsurface 

convection could still actively draw gas towards the surface through the newly fractured 

network, and ultimately enhance the likelihood of noble gas detection at the surface 

 

Figure 5.1 Conceptual illustration of the geologic impact of a UNE, adapted from 
Figure 2.103 of Glasstone & Dolan (1977). 
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(Carrigan & Sun, 2011). Driven by the initial cavity pressure and thermal convection, 

within the first day (or more) following a UNE event a contaminant halo will have 

formed in the fractured rock area around the original cavity. The exact settling of the 

cavity, chimney, and surrounding fractured rock will all affect the distribution of 

radionuclide-containing gas in the halo. Thus even in the case of a well-contained UNE, 

it may be possible for the early noble gas halo to extend upwards hundreds of meters 

from the cavity with "detectable" amounts of 133Xe and 37Ar driven to the surface even 

within the first couple of days, though too small to be eventually detected by IMS stations 

after atmospheric dilution. 

 

5.2 GEOLOGICAL TEST CASE SCENARIO 

In the UTEX model, the true complexity of a physical geology is boiled down to 

specification of just a handful of parameters at each location in a simulation grid. To this 

point, the "geologies" considered in simulation studies have been largely homogeneous 

throughout. That is to say, a single set of physical parameters applied to each point in the 

simulated bulk matrix as a whole. The benefit in this assumption is not really 

mathematical, for in a finite element model point-by-point specification of different 

parameters does not really add significant complexity to the numerical solution of the 

transport. Assuming a homogeneous geology throughout facilitates an examination of the 

sensitivity of gas transport to the various parameters that define that geology. In reality, 

true physical geologies are comprised of layered geological zones that facilitate or inhibit 

gas transport in a more complex way. 
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5.2.1 Geology types 

One limitation of the UTEX model is its assumption that vertical transport of gas 

takes place in vertically-running fractures embedded within the medium. Within this 

framework, however, it is possible to define numerous horizontal zones that can 

correspond to stratification of various geologies. The task thus comes to characterizing 

these various geologic zones in terms of the major parameters utilized by the UTEX 

model to estimate gas transport in the system. While this is not difficult to do, a large 

number of permutations of various geology types stratified in different ways exist in 

nature, so choosing representative examples for exploration is necessary unless a specific 

site scenario is being considered. 

Within the dual porosity geologic framework of the UTEX model, 

characterization of the fracture network in terms of average width and separation 

essentially defines the system scale and paths of transport within. The actual transport 

and exchange of mass between fractures and adjacent bulk media is determined by the 

porosities and permeabilities of the simulated geology. These two properties affect 

transport in different ways and are not always correlated. Porosity refers to the open pore 

space of a rock in which a fluid or gas can be held, and therefore determines the mass of 

gas that can occupy the volume. Permeability is basically a measure of the resistance to 

flow of a fluid through rock, or more accurately, how easily a fluid flows through. (Bear, 

et al., 1993) 

  Table 5.1 and Table 5.2 demonstrate the ranges of possible values of porosity 

and permeability for various bulk geologies. An examination of the two tables will show 

that there are many examples in natural geology of high porosity but low permeability 

rock, and vice versa. Figure 5.2 illustrates the relationship between porosity and 

permeability for various example configurations of grains and pores. For a given 
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porosity, a higher permeability implies that a larger mass of fluid or gas can flow due to 

an existing pressure gradient. For rocks of different porosities, a higher permeability in a 

lower porosity rock can result in less overall mass transport. Soil and sand mixtures are 

generally of high permeability, but finer varieties exhibit low porosity due to the 

closeness of grain compaction. Both limestone and sandstone rocks generally have a 

higher porosity, but can have vastly varying permeability. 

 

 

  

Table 5.1 Porosity ranges for a variety of common bulk geologies, adopted from Freeze 
and Cherry (1977); Hebel (2010). 

rock type density (g/cm3) porosity (%) 
granite 2.75 0-5 - 1-5 

granodiorite 2.76 0.5 . 1.5 
gneiss 2.75 0.5 . 1.5 

syenite 2.79 0.5 . 1.5 
pegmatite 2.75 0.5 . 1.5 

gabbro 3.01 0.1 . 0.2 
basalt 3.01 0.1 . 1.0 

quartzite 2.7 0.1 . 0.5 
sandstone 2.32 5 - 25 

marl 2.1 < 10 
tuff 1.8 1 - 53 

limestone 2.3 5 - 20 
soil, granite 1.7 < 40 

soil, lime 1.6 < 40 
soil, clay 1.8 < 40 
soil, sand 1.6 < 40 

soil, volcanic 1.8 < 40 
monazite sand 3 < 40 
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Table 5.2 Permeability ranges for a variety of common bulk geologies. a - unfractured 
rock; b - fractured rock; adopted from Bear (1972); Bruce (1980); Wang & 
Narasimhan (1986). 

Permeability Range (m2) 

Rock Type 10-20 10-18 10-16 10-14 10-12 10-10 10-8 

Unconsolidated 
     

       Gravel 
                                                       
                                                       

     

       Clean sand 
                                                       
                                                       

     

       Silty sand 
                                                       
                                                       

     

       Silt 
                                                       
                                                       

     

       Clay 
                                                       
                                                       

     

       Shale 
                                                       

     
     

Consolidated 
     

       Igneous &  
         metamorphica 

     
                                                       

                                                 

     

       Nonwelded tuff 
     

                                                       

                                                       

       Welded tuff 
     

                                                       

                                                       

       Sandstone 
     

                                                       

                                                       

       Limestone 
     

                                                       

                                                       

       Igneous & 
         metamorphicb 

     
                                                       

                                                 

     

       Basalt 
     

                                                       

                                                       

 

 

Figure 5.2 Examples of grain-pore configurations in rock demonstrating varying 
relationship between porosity and permeability. a. low porosity and 
permeability; b. & c. high porosities and varying degrees of permeability; d. 
high porosity and low permeability, (McNeill, 1980). 
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In addition to the inherent differences in porosity and permeability among the 

major rock and soil types, these properties are also affected by the specific environment 

of the rock. Compaction, saturation, and clay composition all affect the properties of 

specific rock formations. For instance, looking at Figure 5.2, examples a) and c) could 

represent sandstone rock under different degrees of compaction. In a) the grains are 

tightly packed together, minimizing both pore space and pore connectedness whereas in 

c) grains are packed more loosely resulting in more connected pore space. Similarly, 

comparing b) and c) shows a roughly equal compaction of primary grains, but varying 

amounts of clay content that affects the pore space volume and less so the connectedness. 

In both of these comparisons, the major rock composition and grain size are the same, 

and the ability of compaction and clay content to greatly affect rock porosity and 

permeability are illustrated.    

5.2.2 Test Case 

Geologic stratigraphy 

While there are numerous rock and soil types with characteristics that are 

influenced by a variety of factors, with respect to UTEX modeling of a test case 

everything about the geologies can be defined through simple specification of porosity 

and permeability throughout the system. The choice of a test case geological scenario is 

somewhat arbitrary, but given that the goal is to simulate possible UNE scenarios, a fair 

representative geology can be taken from the general region of the Nevada Test Site. 

Figure 5.3 shows a cross section illustration of the major stratigraphy of the Yucca Flats 

area at the Nevada Test Site, which is composed primarily of stacked tuff regions. Tuff 

refers generally to consolidated rock consisting largely of ash and other volcanic debris 

and is an extremely common, as well as diverse, rock type. On top of the tuff zones sits 
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200-300 m of alluvium, (Halford, et al., 2005; Sinnock, 1982). This cross section model 

is the one adapted here for UTEX consideration. 

An estimate of the porosity and permeability values corresponding to each of the 

formations depicted in Figure 5.3 based on a compilation of estimates is listed In Table 

5.3, (Flint, 1998; Winograd & Thordarson, 1975; Wohletz, et al., 1999). This particular 

geology cross section is representative of a more general scenario in which the primary 

bedrock of a region is overlain by an alluvium cover. Alluvium refers to loose, 

unconsolidated sediment that has been eroded and redeposited by water, typically of a 

non-exact source such as a flood plain. Alluvium is composed of a variety of fine silt and 

 

 

Figure 5.3 General hydraulic stratigraphy cross section of the Yucca Flats area of the 
Nevada Test Site, adopted from Halford et al. (2005)  
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clay particles as well as courser sand and gravel, and as shown in Table 5.3 often has a 

substantially higher permeability than the bedrock that it often covers (Miall, 1990). The 

various tuffs comprising the Yucca Flats area are attributable to volcanic activity during 

different epochs in the geological timeline. 

 

 

Cavity and surrounding area 

As outlined at the beginning of this chapter, a deep UNE event itself greatly 

impacts the geological environment, at least locally. A further examination of the effects 

of a heterogeneous geology on the subsurface transport of UNE radionuclide gas should 

also make some kind of account for the induced cavity and surrounding rubblized zone. 

Quantifying such effects on the geology in a generalized, hypothetical UNE scenario is 

very difficult. The size of the resulting initial post-UNE cavity is very much a function of 

depth of burial and the characteristics of the surrounding rock environment, as well as the 

yield size of the explosion. On top of that, the pattern and scale of rubblization 

Table 5.3 Estimated porosity and permeability values for the representative geologic 
stratigraphy in Figure 5.3, compiled from estimates in Flint (1998); 
Winograd & Thordarson (1975); Wohletz et al. (1999).  

Formation Porosity,  Permeability km (m2) 

Alluvial rock 0.20 1E-11 
Ammonia Tanks tuff 0.40 1E-13 

Rainier Mesa tuff 0.46 1E-14 
Paintbrush tuff 0.40 1E-14 

Grouse Canyon tuff 0.41 1E-14 
Tunnel beds 0.35 1E-14 

Carbonate rock 0.35 1E-13 
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surrounding the cavity are affected by the same parameters, as well as additional 

variability due to height of the resulting chimney and degree of cavity roof collapse.  

For moderately deep, contained UNEs, Glasstone & Dolan (1977) give an 

estimate for the resulting cavity radius of the order 10 m for a 1 kton detonation. Since 

the real object of the present work is to demonstrate the capability to model cavity and 

similar effects and gain insight into their influence on radionuclide gas transport, an order 

of magnitude estimate of the cavity size is more than sufficient for general purposes. The 

nature of the rock surrounding the cavity is highly variable. Due to the very high pressure 

of the event, the shock-induced rubblization, and the large overburden, the porosity and 

permeability of the rock surrounding the cavity is expected to decrease significantly. 

Estimates of the cavity and surround region porosity and permeability in the simulated 

post-UNE system are therefore highly variable and subject to a large number of 

influencing factors. For the purpose of general illustration, values adopted here for the 

cavity porosity and permeability are  = 0.40 and km = 1E-13 m2 respectively, and for the 

surrounding disturbed zone:  = 0.04 and km = 1E-19 m2 with a total diameter of 100 m  

(Garber, 1971; Wohletz et al., 1999). An extended vertical chimney is not assumed, even 

though incorporation of one in the model would be straightforward. 

 

5.3 SIMULATED TEST CASE 

Figure 5.4 and Figure 5.5 show the assumed porosity and permeably profiles of 

the UNE test case input for UTEX modeling. The geological strata in these figures depict 

a simplified conceptualization of that shown in Figure 5.3 down to a water table of an 

approximate depth of 400 m, which marks the lower boundary in the simulated 

geological model. Included rock formations in the test case model consist of 150 m thick 
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alluvium followed by three tuff zones of thicknesses between 50 and 100 m. Embedded 

within the tuff bedrock at a depth of 300 m is the center of the assumed cavity with a 

"radius" of 10 m extending in the vertical direction. Likewise, a rubblized region extends 

50 m out from the center of the cavity.  

Obviously the scales of the horizontal and vertical axes of Figure 5.4 and Figure 

5.5 are different by two orders of magnitude. Recall that UTEX considers transport in 

dual porosity vertical slabs, or half-slab unit cells, that include a single vertical fracture 

and half of the bulk medium separating adjacent fractures, δm / 2. Mass exchange between 

adjacent unit cells occurs at shared boundaries, so that in theory UTEX can simulate 

transport in a system of arbitrary vertical and horizontal extent within the unit cell 

framework. In practice, however, this method of piecing together unit cell-simulated 

transport quickly gets computationally expensive. For this reason, the modeled system 

width in the present test case is 10 m, representing six adjacent unit cells in which 

transport is simulated across δm / 2 = 3.3 m. This representation, as seen in the porosity 

and permeability figures, reduces the simulated cavity and rubblized zone widths (in the 

horizontal direction) to roughly 3 m. While such an ellipsoid is of course not directly 

representative of a spherical cavity, it still allows for the effects of vertical transport and 

lateral spread of gas to be studied within a more modest computational setting.  
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Figure 5.4 UNE geological test case simulated porosities within the UTEX model input. 

 

Figure 5.5 UNE geological test case simulated permeabilities within the UTEX model 
input. 
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Simulated transport for the test case illustration was conducted over 55 days. The 

assumed average fracture width and separation were taken to be 1 mm and 3.3 m 

respectively. Snapshots of the 133Xe concentration profiles within the simulated system 

are shown in Figure 5.6 and Figure 5.7 to depict the transport of UNE gas within the 

UTEX model. The following points can be made regarding the transport of UNE gas as 

simulated and depicted in these snapshots. 

 The initialized system begins with a uniformly distributed concentration of 133Xe 

throughout the estimated cavity volume, which has a total thickness of 100 m (in the 

vertical direction). This uniform concentration includes the cavity region. 

 At 1 Day, 133Xe concentration is already seen beginning to move upwards through the 

middle fracture. Lateral migration into the surrounding bulk medium is also seen. The 

distribution of the iodine and iodine precursors were assumed, somewhat arbitrarily to 

be 75% in the cavity and 25% in the halo – the higher concentration ingrowth of 

133Xe in the cavity region is visible. 

 At 2 Days, the effect of the various geological zones are evident in the vertical 

progression of gas up the middle fracture - the higher permeability regions inhibit the 

quick movement of trapped gas back out of the bulk medium, resulting in an apparent 

"pooling" at the boundaries. Also evident are the differential migration rates between 

the two tuff zones of very slightly different porosities whose boundary is located at 

300 m depth (refer back to Figure 5.4). 

 Between 5 and 15 days, lateral gas migration reaches adjacent fractures and begins 

vertical transport there. Note at 10 days the apparent evacuation of the fracture.  

 Jumping ahead to 40 and 50 days, the total 133Xe inventory has reduced substantially 

(note the change in colorbar scale). The vertical concentration profile is more uniform 

and the contaminant front has effectively reached the surface.  
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5.4 TRANSPORT EFFECTS 

5.4.1 Geological effects 

The effects of the stratified geological zones in the illustrative test case depicted 

in Figure 5.6 and Figure 5.7 are largely as expected. In the lower cavity region, smaller 

porosity and permeability mediums inhibit the advective flow of contaminant gas, 

essentially attenuating the effects of rapid atmospheric pressure fluctuations deeper 

within the system. In the higher regions where vertical transport brings contaminant gas 

toward the surface, 133Xe migrating into the adjacent bulk mediums is more effectively 

trapped in the tuff regions than in the more porous and permeable alluvium zone. Over 

time and after numerous oscillations in the pressure, the concentration of 133Xe builds up 

along the fractures in the upper zones where it eventually spreads into the bulk matrix. By 

40 days simulation time, movement of gas within the fractures up towards the surface is 

very efficient as the vertical concentration profile is nearly constant; in effect, the 

contaminant front has risen close to the top of the system. 

Qualitatively, the most prominent effect of the heterogeneous geology on the 

vertical gas transport simulated in UTEX is in the obvious stratification of the 

contaminant front that is depicted in simulation snapshots of Figure 5.6 and Figure 5.7. 

To better examine the influence of the various simulated geological strata on the 

transport, simulation studies similar to the test case presented in Section 5.3 were made 

by removing various modeled features and comparing the resulting transport. Results of 

these simulations are presented in Figure 5.8, which plots the estimated 133Xe 

concentration at the top of the center fracture during the 55-day simulation time. Four 

cases were modeled; the first was the test case from above in which the full cavity/halo 

region and three tuff layers overlain by an alluvium zone are modeled. Simulations then 
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considered removal of the modeled cavity/halo region in the immediate vicinity of the 

assumed UNE event; i.e., as if the event had no effect on the geology. The last two cases 

simulated considered the transport through just one tuff and an alluvium region as well as 

one tuff region only.  

The blue curve of Figure 5.8 represents the base case of this study in which the 

conceptual stratification of the geology is modeled, and in most instances of 133Xe 

reaching the top of the fracture simulated the lowest concentrations. The effects of 

neglecting the cavity and halo geologies shown by the green line are not entirely 

straightforward. In the early to middle portion of the simulated time frame, the clear 

effect exhibited in Figure 5.8 is a marked increase in UNE gas concentration at the top of 

the middle fracture. The major difference in this case is the removal of the non-porous 

 

Figure 5.8 133Xe instantaneous surface level outflows for different configurations of the 
UTEX system geology for simulations carried out over 55 days of 
subsurface transport.  
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and impermeable halo region where a smaller fraction of the radioxenon ingrowth from 

iodine is assumed to occur from to the initial distribution of UNE gas outside the cavity. 

This 133Xe contribution from this region is expected to now be much greater because: a) 

the porosity of the halo region is now much higher and so can contain a much larger 

volume of gas, and b) the permeability is considerably higher as well which facilitates a 

more rapid movement of the gas out of the region. The net effect is seen in the figure – in 

the time frame where gas reaching the top of the fracture largely emanates from the UNE 

source region, the concentration is higher than in the base case. This difference is less 

pronounced at later times, however, where the effects of barometric pumping have built 

up the contaminant front, and the gas reaching the top of the fracture is not necessarily 

primarily composed of gas directly from the lower regions of the system. 

The third case is represented by the red line of Figure 5.8 and models just the 

alluvium region and a single tuff region defined by  = 0.40 and km = 1E-13 m2. Fracture 

concentrations at the top of the system are, somewhat unsurprisingly, higher than in the 

previous cases at almost all times, since the lower porosity and permeability tuff regions 

have been removed. The effect of the barometric pumping still exists, and at the later 

times the effects of the altered geology are less pronounced. In fact, at roughly 50 days 

the concentrations simulated in the single tuff model are slightly suppressed, which could 

be attributable to slightly more open tuff region, implying a more efficient removal of gas 

at earlier times can potentially inhibit the overall build-up of the concentration front at 

later times. Interestingly, in the last case, where the alluvium region is removed and the 

one tuff region is assumed throughout, the resulting fracture concentrations are hardly 

affected until the later parts of the simulated time. Again, the removal of the slightly 

lower porosity and more permeable alluvium region could enhance the barometric 
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pumping within the system at shallower depths, though this effect is less prominent than 

in the difference between the previous cases. 

5.4.2 Cavity and halo effects 

UNE cavity and halo dimensions are difficult to predict in a general sense because 

they are sensitive to a large number of factors that interact in a complex way. The size of 

the UNE, the depth of burial, and the nature of the emplaced bedrock will all affect the 

resulting post-detonation environment (Glasstone & Dolan, 1977). No attempt is really 

made in the present work to correlate these factors for a specific set of geological and 

explosion parameters; instead, for the benefit of maintaining generality, the order of 

magnitude estimates of Section 5.3 were adopted. Since the size of the cavity and 

disturbed rock halo zone are certainly important variables in characterizing a potential 

UNE event, UTEX was used to simulate the resulting gas transport resulting from 

scenarios which spanned a small range of cavity and halo sizes. 

Top of the fracture 133Xe concentrations simulated for these few cases are shown 

in Figure 5.9. The first three curves in the figure plot concentrations resulting from 

various assumed diameters or thicknesses of the modeled cavity with porosity and 

permeability as described already. These curves vary only slightly throughout the 

simulation time, and largely speaking the apparent cavity size effect grows smaller as 

simulation time progresses. Around 10 days’ time, the residual 133Xe following a sizable 

pressure low is noticeably higher for larger cavity thicknesses. This observation is likely 

attributable to the larger fraction of xenon gas that emanates in the higher porosity and 

permeable cavity region versus the surrounding halo. Once again, the differences 

between the cases are less pronounced at later times, likely owing to the fact that on the 

total vertical system scale of 400 m, changes in the cavity size of the order 10 m does not 
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greatly influence the bulk migration of the xenon contaminant front due to barometric 

pumping. 

The last curve of Figure 5.9 (green line) shows the concentration result for the 

case of halo region that is twice the thickness of the previous cases. A couple of 

interesting points regarding the observed effects can be made. First, the distribution of 

noble gas source is now substantially larger, and even though the modeled halo is not as 

comparatively favorable to rapid transport as the cavity is, some fraction of the xenon 

source is now substantially closer to the surface. In the figure, an earlier 133Xe outflow 

peak occurs at roughly 1 day simulation time, certainly the result of the direct UNE-

produced xenon in the upper regions of the halo. At medium times, the effect of the 

extended halo seems to be to inhibit some of the 133Xe outflow at the top of the fracture, 

since movement of gas out of the region in response to pressure fluctuation is slower. At 

later times, however, as the overall distribution of xenon builds up vertically in the 

system, the extended halo region is more quickly saturated than the previous tuff regions 

and thus better facilitates the effects of barometric pumping in this time frame. By 35-40 

days simulation time, the resulting concentration front is ahead of the previous, smaller 

halo cases. At the latest times, all the cases converge and no effect of the extended halo is 

observable. 
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5.4.3 Cavity overpressurization effects 

Additionally, UTEX simulations were conducted using the test case scenario but 

assuming a variable initial pressurization of the cavity region to consider the potential 

effects of the post-event high pressure state of the system. The results for four 

overpressurization scenarios are shown in Figure 5.10; note that the cavity pressure is 

initialized to the indicated overpressures and then allowed to evolve according to the 

calculated system pressure response rather than artificially held fixed for any length of 

time. The effects of the overpressure are more or less clear. With no overpressurization 

(i.e., the base case), the first spike in the fracture concentration as indicated by the blue 

 

Figure 5.9 133Xe instantaneous surface level outflows for the full cavity/halo and 
geological zone test case model simulations carried out over 55 days of 
subsurface transport with different cavity and halo thicknesses assumed. 
Stated dimensions refer to the simulated total thickness. 
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line in the figure occurs between 3 and 4 days simulation time. In all three cases of an 

initial overpressurization of the cavity region, the fracture concentration quickly spikes at 

around 1 day and continues for a period of time that depends on the size of the pressure. 

For the largest overpressurization considered, roughly 13% of atmospheric pressure, the 

initial 133Xe push continues for more than three days. The fact that all three 

overpressurization cases result in an initial 133Xe spike of roughly equal maximum 

concentration suggests that the bulk of this outflow is due to an evacuation of the cavity 

regions nearest to the open fracture. The larger initial pressures then impose a more 

sustained flow towards the surface as the equalization time is longer. 

 

 

Figure 5.10 133Xe instantaneous surface level outflows for the full cavity/halo and 
geological zone test case model simulations carried out over 55 days of 
subsurface transport with different initial cavity overpressurizations 
assumed. 
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By 8 days simulation time the effects of cavity overpressurization are much less 

noticeable. A large part of this is the dissipation of the high pressure within the rest of the 

system, but the influence of the atmospheric pressure, at least in the UTEX model, are 

important too. The high number of periods of extended atmospheric pressure lows in the 

early simulation time frame facilitates an equalization of the cavity pressure that might 

otherwise persist longer. The differing effects are also evident at around 35-40 days 

simulation time where the contaminant front is quickly building up in the higher regions 

of the system. Here, however, the trend is reversed – the overpressurized cases exhibit 

temporarily lower fracture concentrations, likely due to the substantially greater earlier 

time evacuation of UNE gas from the lower regions. Still, by and large, the 

overpressurization of the cavity in the UTEX simulations has a small effect on the long 

term release of UNE gas due to barometric pumping.   

Finally, Figure 5.11 shows a four isotope MIRC plot for five of the UTEX 

simulated scenarios presented in this chapter for illustration of resulting variability in the 

radioxenon isotopics. The points on the plot represent xenon collection in the modeled 

system over 12 hours with decay corrected in the cumulative sampling windows. The 

most interesting features of the decay in this plot are: 

 At roughly day 2, the full-model, 100 torr overpressurized case (dashed magenta line) 

exhibits a sizable fluctuation, attributable to the rapid movement of the initial cavity 

xenon gas towards the surface. 

 At roughly day 14, an additional fluctuation in the ratios is present in all of the 

simulated cases following a sizeable pressure low and movement of gas to the top of 

the fracture. The size of this fluctuation is nearly equal for both the initially 

pressurized and unpressurized full-model cases (note that the lines overlap in the 

figure), but with further simplification of the geology (removing cavity, halo, 
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alluvium, etc.) the amplitude decreases. The implication of this is similar to previous 

conclusions – the less permeable, lower porosity regions of the simulated geology 

inhibit the rapid flow of gas due to pressure fluctuations. As the system is opened up 

and homogenized in the various test cases, the effects of source mixing are reduced as 

gas is less likely to be trapped in the bulk medium. 

 The radioxenon ratios at later times tend to fluctuate little between the cases and are 

more less representative of the non-fractioned decay case. 

 

 

Figure 5.11 Four xenon isotope MIRC plot comparing the various geological and 
overpressurization cases presented in this work. Note that the first two 
curves (aqua and dashed magenta lines) overlap in the largest spike; in the 
earliest time spike, the 100 torr case does not overlap any other lines. 
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Figure 5.12 Two ratio, three xenon isotope MIRC plot comparing the various geological 
and overpressurization cases presented in this work. 

Figure 5.12 shows the same results but on a three isotope MIRC plot that does not 

include 135Xe. The same effects and trends are evident – the overpressurization case shifts 

the isotopics slightly in the early time, but has no real noticeable effect at later times. The 

largest isotopic fluctuation in the various simulations is reduced as the overall system is 

effectively homogenized and opened up.  

 

5.5 CONCLUSIONS 

Within the dual porosity framework of the UTEX model, the capability to 

simulate conceptually realistic heterogeneous geologic scenarios has been demonstrated 

in this chapter for a somewhat generic test case. Many of the simulated UNE gas 

transport effects from considering geologies with multiple rock formations presented in 
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this chapter are more or less intuitive. The introduction of highly impermeable and low 

porosity zones in the modeled system results in an attenuation of the bulk air flow in 

those regions, which depending on the situation, can either enhance or inhibit vertical gas 

migration from a deep UNE source. Generally speaking, movement of radioactive gas 

from a deep underground source operates on two substantially different timescales. In the 

short term, higher porosity and more permeable mediums allow for a more rapid and 

efficient movement of noble gas in response to barometric fluctuations at the surface. 

However, with regard to gas invading the upper levels of the bulk matrix medium, this 

more open geology is less effective at trapping gas in those higher regions. The result of 

this difference is that on longer time scales, effects of barometric pumping are subdued in 

the more open geologies, as the UNE gas front is not as effectively built up towards the 

surface. 

Similarly, it has been demonstrated that in some respects the potential variability 

of the geology can have a significantly greater impact on UNE gas seepage closer to the 

source than near the surface. As seen in Figure 5.8, the substantial effect of replacing the 

higher permeability (but slightly lower porosity) alluvium layer with tuff in the top 150 m 

of the system was substantially less pronounced than changes made to the lower tuff 

regions. This is not altogether surprising considering that the gas being considered for 

transport here is radioactive so that its eventual transport to the surface is an inherent race 

against time. The faster the UNE noble gas can escape the lower regions, the much higher 

probability that it can leak from the system on subsequent swings in the atmospheric 

pressure. 

This trend is likely especially true of the geologic conditions in the immediate 

vicinity of UNE cavity. How the cavity fills in and how the surrounding environment 

fractures and gets compacted due will have a large influence on how quickly noble gas 
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can move upwards in system. Additionally, the actual distribution of radioxenon, iodine, 

and radioargon gas in the early halo zone is certainly of importance as well, and is likely 

a good subject for further investigation in this area. However, as shown in Figure 5.8 as 

well, the effects of the variability in the geology are less pronounced in the long term 

process of barometric pumping, at least in an order of magnitude sense. This is largely 

attributable to the dominance of fracture transport in the dual porosity model, something 

that is not completely emphasized in this study and should be incorporated into future 

development considerations.  

A cursory examination of the effects of the highly overpressurized post-UNE 

cavity state has also been made. UTEX simulations of these cases indicate that the 

overpressurization does indeed lead to a substantial increase in the movement of UNE 

gas to the to the shallow depths in the short term time frame, but within a week’s 

simulation time these induced outflows have largely subsided. An additional, less critical 

effect of the overpressurization may occur at later simulation times when the cumulative 

effects of barometric pumping result in a rise of the contaminant front into the higher 

system regions. At this point, the concentration levels of the overpressurized cases lagged 

behind somewhat, likely due to the earlier outflow of gas from the lower regions. These 

effects, however, only appeared temporarily in the simulations and largely speaking the 

effects of overpressurizing the UNE cavity were minimal on the long term migration of 

radioxenon due to barometric pumping. 

Lastly, the isotopics of the resulting radioxenon outflows at the top of the 

simulated system were considered. The overpressurized cavity case was found to exhibit 

a substantial fluctuation at the very early times, corresponding to a removal of gas 

directly from the cavity environment that was void of iodine ingrowth. This fluctuation 

was short-lived, and beyond the first couple of days the xenon isotopics did not seem to 
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be affected by the initial pressure in the cavity. In looking at the various cases where 

more impermeable and less porous tuff regions were considered, the simulated effect of 

removing such zones from the modeled geology were to reduce the magnitude of isotopic 

fluctuations. In essence, regions within the geology that inhibit rapid movement of gas in 

response to atmospheric pressure fluctuations are also more likely to induce isotopic 

fluctuations through the trapping of upward-moving noble gas. By homogenizing the 

geology and essentially opening the system up to greater freedom of movement, the 

radioxenon ratios are less disturbed by movement through the geology. These effects, 

especially with regard to modeling of the cavity environment as well as the pulverized 

and fractured region surrounding, are very likely candidates for additional future study 

with the UTEX model. 
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Chapter 6. Radionuclide Soil-Gas Background 

Ideally, measured soil-gas concentrations of radionuclides used as evidence of 

underground nuclear explosions would be entirely anthropogenic in origin. While the 

bulk of the current work is aimed at the examination of radionuclide signatures for the 

purpose of distinguishing among various anthropogenic sources, some attention to 

naturally-occurring radionuclides is necessary for the context of an OSI. Broadly 

speaking, radionuclides within soil-gas can originate from three potential sources:  

 Underground anthropogenic sources 

 Atmospheric sources - anthropogenic and natural 

 Natural soil-gas background 

Both atmospheric infiltration and natural soil background levels of radionuclides have the 

potential to contribute to measured soil-gas samples, thus an understanding of their origin 

and distribution throughout the subsurface environment is important to isolating 

radionuclide signatures that might emanate from an underground nuclear detonation.  

 Characterization of global natural soil-gas backgrounds has become a larger 

priority in recent years as radionuclide detection sensitivities continue to improve and the 

need to distinguish between low concentration sources increases. Current radioxenon 

detection limits for field and laboratory SAUNA systems are approaching 2 mBq/m3 and 

0.2 mBq/m3 respectively (Haas et al., 2010). On the radioargon side of things, the 

reported detection limits of the Chinese MARDS system is 25 mBq/m3 (Xiang et al., 

2008) and a new laboratory ultra-low-background proportional counter developed at 

Pacific Northwest National Laboratory (PNNL) is 1.2 mBq/m3 (Aalseth et al., 2013); 

additionally, PNNL scientists have placed lower limits on 37Ar field and laboratory 

systems at ~20 mBq/m3 and ~0.02 mBq/m3 respectively (Haas et al., 2010). These 
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various detection limits are shown in Figure 6.1 on an empty radioactive decay plot for 

comparison and to illustrate the range of radioxenon and radioargon detection 

capabilities. 

The goal of the work presented in this chapter was to establish representative 

natural soil-gas background source profiles of xenon and argon to be used in the UTEX 

model to examine how gaseous diffusion and barometric fluctuation-driven advection can 

affect equilibrium concentrations. A cursory examination of the processes relevant to 

radioxenon and argon soil-gas background production is made based on previous work is 

made. Current literature on the subject typically provides order of magnitude ranges on 

 

Figure 6.1 Radioargon and radioxenon detection limits on empty decay plot; adapted 
from Haas et al. (2010). 
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background equilibrium concentrations based on radioactive decay and an approximation 

of gas emanation from rock space into porous air space. The radionuclide source 

production rates that are needed as an input to run UTEX simulations could be obtainable 

from these equilibrium estimates, but only if the details of the assumed geologic porosity 

and emanation coefficient and the estimates as a function of depth are provided in the 

literature. Furthermore, the use of cumulative xenon yields to produce most literature 

estimates is not entirely conducive to integration into the UTEX model, as is explained 

near the end of this chapter. 

 

6.1 OVERVIEW OF CONTRIBUTIONS TO SOIL-GAS BACKGROUND 

Radioactive nuclides naturally present in the ground exist in concentrations that 

are determined predominantly by the following factors: 

 Source – the rate of radionuclide production in the ground, as determined by the 

natural distribution of elements and neutron fluxes. 

 Decay – the rate of radionuclide loss through radioactive decay, along with 

production rate determines the radioactive equilibrium concentrations within the soil-

gas background. 

 Emanation – the process of radionuclides that are produced within a rock matrix 

moving into the air-filled pore space within the bulk rock volume where it can be 

transported, collected, and/or measured. 

 Transport – the movement of gas in a porous medium by diffusion or bulk advection 

will influence the equilibrium concentrations. 

While a large number of processes are capable of producing radioxenon, it is 

predominantly a product of fission reactions. As such, the background concentration of 
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radioxenon within a specific geology is greatly dependent on the natural distribution of 

fissionable isotopes, most notably uranium (comprised of 238U and a small fraction of 

235U) and thorium (mostly 232Th) in the ground. Furthermore, fission of these isotopes can 

occur both spontaneously in a small fraction of radioactive decays as well as induced by 

neutrons. An estimation of the background neutron flux is therefore required for the 

consideration of both neutron-induced fission reactions as well as the multitude of other 

xenon yielding processes. With respect to radioargon, neutron flux estimation is also 

important for an examination of 37Ar in natural background because of its genesis by 40Ca 

neutron activation and much smaller contribution from activation of naturally-present 

36Ar in soil-gas air. 

 The bulk of this chapter is dedicated to establishing an estimate of radionuclide 

production rates in different depths of a variety of geology types. To accomplish this, a 

survey is made of the possible neutron and more generalized-particle reactions that can 

produce radioxenon and radioargon, which are qualitatively evaluated for relevance to 

soil-gas backgrounds based on natural elemental compositions and length of half-lives. 

The neutron flux attributable to cosmic ray sources and natural subsurface fission 

reactions is also considered, though quickly, to estimate neutron-induced reaction rates. 

These collectively provide an approximation to the natural radionuclide source term used 

as input for the UTEX model to consider the effects of transport on the background 

distribution. 

 

6.2 COSMIC RAY BACKGROUND 

Cosmic radiation refers generally to the wide array of solar and extra-solar 

particles, typically of very high energy, that impact Earth's atmosphere. The term "cosmic 
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ray" is somewhat of an historical misnomer, as it was originally believed to be largely 

made up of electromagnetic radiation. In fact, today gamma rays or X-rays are regarded 

separately from cosmic particle radiation, which is comprised of protons (86%), α-

particles (11%), nuclei of heavier elements up to uranium (1%), and free electrons (2%) 

(Perkins, 2003). With elemental compositions similar to stars, recent research has 

concluded that cosmic rays largely originate from stellar supernovae (Ackermann et al., 

2013). 

Primary cosmic ray particles, upon entry into Earth's atmosphere, induce massive 

showers of secondary particles through collision with heavy air that is termed cosmic ray 

spallation. An illustration of this process is shown in Figure 6.2; secondary particles 

produced in the initial primary particle collision are a variety of pions (π+, π-, π0), kaons, 

neutrons, as well as smaller fragmented nuclei (not shown in the figure). The charged 

pions have a proper lifetime of only 26 ns and a mean free path on the order 55 m for 1 

GeV energies before undergoing decay by15:       and      . These 

daughter muons subsequently undergo decay themselves with a proper lifetime of 

2200 ns: e         and e        . The longer muon lifetime means 

that a significantly greater percentage of muons than pions reach the Earth's surface - the 

mean free path of a 1 GeV muon is about 7 km as compared to 55 m for a charged pion. 

At energies of around 3 GeV, muons produced in the atmosphere have a substantial 

chance of reaching the surface (Perkins, 2003). 

                                                 
 
15 Assuming an example pion energy Eπ = 1 GeV, mπc

2 = 0.139 GeV, then γ = Eπ/ mπc
2 and the mean free 

path given a proper lifetime τ is λ = γcτ = 55 m (Perkins, 2003). 
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A number of factors contribute to the flux of cosmic ray particles entering the 

upper atmosphere, including the solar wind and magnetic field of the Earth, both of 

which generally serve to deflect particles and reduce the cosmic ray flux, especially at 

energies <1 GeV. The solar wind, however, is not constant and can result in variation of 

the cosmic ray flux on the order of 50%. Also, the Earth's magnetic field strength is 

generally dependent on latitude and longitude, and thus also factors into the variability of 

the cosmic ray background flux. Cosmic ray originating neutrons, protons, α-particles, 

muons, and neutrinos all have at least some small potential to induce radionuclide-

generating reactions in the subsurface environment, though most of these are likely to 

        

Figure 6.2 Cosmic ray spallation illustration with primary particle (proton) inducing a 
cascade of secondary particles (pions and neutrons as well as fragmented 
smaller nuclei not shown in the illustration) that induce further interactions 
(LANL, 2011). 
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contribute negligibly to the soil-gas radionuclide background. Many of these subsurface 

reaction mechanisms are mentioned in Section 6.4.2 and their likelihood of background 

contribution at least qualitatively discussed. 

 

6.3 DEFINITION OF SOIL-GAS BACKGROUND SOURCES 

The cosmic ray background flux of high-energy particles is largely attenuated by 

the atmosphere, thus limiting their contribution to the radioxenon and radioargon soil-gas 

background. Concentrations of these gases are thus predominantly determined by rates of 

spontaneous fission as well as neutron-induced reactions (both fission and non-fission). It 

turns out that the greatest contribution of the cosmic ray background to soil-gas 

radionuclide levels is in the neutron flux within the subsurface environment, particularly 

in the upper few meters. Beyond the shallow depths, in-situ fission neutrons largely 

determine the neutron flux. A characterization of the neutron flux that drives neutron-

induced reactions is thus an important component to establishing an estimate of the 

radionuclide natural soil-gas source term. 

6.3.1 Spontaneous fission 

An estimation of the radionuclide background due to spontaneous fission is 

straightforward compared to that resulting from neutron interactions because the former 

is dependent only on the assumed natural concentrations of fissionable nuclei. 

Spontaneous fission occurs with a small probability along with other types of decay of 

very heavy nuclei, particularly those having atomic masses greater than 92 amu. The 

fraction of decays that occur by spontaneous fission rather than α-decay is termed the 

spontaneous fission branching ratio, Γsf. This branching ratio typically increases with the 
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atomic mass of the nuclei, but is very small in naturally occurring isotopes of uranium, 

thorium, and even plutonium. 

Given an atomic density Ni of an isotope i, a volume V, and a decay constant λi, 

the activity of the nuclide can be expressed 

i i iA NV . 

Since the branching ratio Γsf is the fraction of total decays that occur by spontaneous 

fission, the spontaneous fission rate of the nuclide i is just  
sf

i i iR A  .  (6.1) 

If the associated yield of a particular isotope j from the reaction of nuclide i is Yj
i, then the 

rate of production of that nuclide due to spontaneous fission of i can be expressed  
,i sf i sf i

j i j i i jP RY A Y   .  (6.2) 

6.3.2 Particle-induced reactions 

For the case of radioxenon production in soil-gas background, the most relevant 

particle-induced reactions are neutron induced reactions, particularly fission of 235U, 238U, 

and 232Th. Besides fission, a number of other neutron and more general particle 

interactions in natural geology can produce radioxenon. In Hebel (2010), many non-

fission xenon-producing reactions were evaluated for their potential to contribute to soil-

gas background levels; most of these were largely expected to contribute negligibly to the 

Xe background in comparison. While a survey characterizing these possible Xe-

generating interactions is made here, in quantifying the expected radioxenon background, 

attention is confined to neutron-induced fission genesis. Similarly, the focus of 37Ar 

production is on the neutron activation of 40Ca as well as possible muon interaction with 

potassium. 
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Neutron interactions 

Like spontaneous fission, conceptually the task of quantifying neutron-induced 

reaction rates and subsequent radionuclide yield is straightforward. Neutron-induced 

reaction rates are dependent on the atomic density Ni of the target nuclei i, the cross 

section for the generalized (n,X) reaction, σi
X, and the flux of neutrons ϕ. For the case of a 

monoenergetic neutron flux ϕ(Ek) of energy Ek, the reaction rate is simply  

( ) ( ) ( )X X
i k k i k iR E E E N V  . 

such that the rate of production of radionuclide j with a yield Yj
i,X due to the i (n,X) j 

reaction is given by  
, ,( ) ( ) ( ) ( )i X X i X

j k k i k i j kP E E E N VY E  . (6.3) 

However, Equation (6.3) is only correct when assuming a flux of neutrons of a 

single energy. In the more general case that ϕ = ϕ(E), both the reaction cross section and 

yield become a function of the incoming neutron energy, and thus the reaction and 

radionuclide production rates become dependent on the neutron flux energy distribution. 

The need to characterize the natural neutron flux background significantly complicates 

the estimation of the neutron-induced reaction rates. Given an estimate of the neutron 

flux ϕ(E), the energy-integrated equivalent of Equation (6.3) is  
, ,( ) ( ) ( )i X X i X

j i i j

E

P N V E E Y E dE   .  (6.4) 

An examination of the soil background neutron flux needed for utilization of Equation 

(6.4) is made in Section 6.5. 
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Table 6.1 Xenon-and argon-producing neutron reactions of potential relevance to the 
natural soil- gas radioxenon background. Relevant xenon reactions adapted 
from Hebel (2010); argon reactions compiled from online endf tables by 
Chadwick et al. (2011). *These are argon-producing reactions not expected 
to be relevant due to low natural elemental composition. 

Xenon-131m Xenon-133m Xenon-133 Xenon-135 Argon-37 

23 5U (n, f ) 13 1mXe 235 U (n, f ) 133 mXe 23 5U (n, f ) 13 3Xe 2 35U (n, f ) 1 35Xe 39K (n,2n+p) 3 7Ar 

23 8U (n, f ) 13 1mXe 238 U (n, f ) 133 mXe 23 8U (n, f ) 13 3Xe 2 38U (n, f ) 1 35Xe 4 0Ca (n,α) 3 7Ar 

2 32Th (n, f ) 13 1mXe 232Th (n, f ) 133 mXe 23 2Th (n, f ) 13 3Xe 232Th (n, f ) 135Xe  

1 30Te (n, γ) 1 31Te  1 32Xe (n, γ) 1 33Xe 13 4Xe (n, γ) 135 Xe *other less-relevant:

132 Xe (n, 2p) 13 1Te  1 33Cs (n, p) 1 33Xe 13 5Cs (n, p) 135 Xe 36Ar (n, γ) 3 7Ar 

1 32 Xe (n, d ) 1 31I  134 Ba (n, 2p) 1 33Xe 1 36Ba (n, 2p) 135 Xe 38 Ar (n,2n) 3 7Ar 

13 2Xe (n, n+p) 13 1I  1 34Xe (n, 2n) 133 Xe 13 6Xe (n, 2n ) 13 5Xe 39 Ar (2,3n) 3 7Ar 

133Cs (n,3He) 13 1I  13 4Xe (n, 2p) 13 3Te 1 36Xe (n, 2p) 135Te 4 1Ca (n,n+α) 37 Ar 

13 4Xe (n, α) 131Te  134Xe (n, d ) 1 33I 1 36Xe (n, d ) 135 I  

134 Xe (n, n+t ) 13 1I  13 4Xe (n, n+p) 13 3I 136 Xe (n, n+p) 135 I  

1 35Cs (n, n+α) 131I  1 35Ba (n,3He) 1 33Xe 13 7Ba (n,3 He) 135 Xe  

  135 Cs (n,3He) 1 33I 138 Ba (n, α) 135Xe  

  1 35Cs (n, n+d ) 133 Xe   

  1 35Cs (n, t ) 133Xe   

  13 6Ba (n, α) 13 3Xe   

  1 36Xe (n, 4n) 133 Xe   

  1 36Xe (n, α) 133Te   

  13 7Ba (n, n+α) 133 Xe   
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The first four columns of Table 6.1 list a multitude of radioxenon-producing 

neutron interactions that can potentially contribute to the soil-gas background, adapted 

from Hebel (2010). These processes are deemed relevant based on an evaluation of target 

half-lives being long enough to undergo interaction as well as products consisting of 

either xenon or direct parent nuclides. Under these criteria, for example, radioactive 

xenon isotopes themselves are excluded as potential targets for neutron interaction since 

their short half-lives would result in interaction rates orders of magnitude lower than 

other relevant reactions. The last column of Table 6.1 lists the two primary neutron 

interactions capable of producing 37Ar obtained from the ENDF online database search 

tool (Chadwick et al., 2011); also shown are other argon-producing reactions that are less 

relevant because of the low or non-existent natural abundance of the target nuclei in 

geologies (Chang, 2000). 

Proton interactions 

Protons comprise roughly 86% of the cosmic ray primary particle flux entering 

the top of Earth's atmosphere. Even though such protons have very high-energy (see 

Figure 6.3), only a fraction could be expected to reach sea-level and have a direct impact 

on radionuclide production underground. Attenuation of the flux or intensity, I(E,x), of 

nucleons passing through a medium can be approximated by  
/( , ) ( ,0) xI E x I E e    (6.5) 

where I(E,0) is the initial intensity, x is depth traversed, and Λ is attenuation length. For 

protons in the atmosphere, Λ ≈ 123 g cm-2; Figure 6.4 shows an estimate of the energy-

integrated vertical fluxes of various cosmic ray nucleons versus depth of atmosphere. For 

the p + n curve, the initial proton fraction is about 0.9 whereas the fraction sea level is 

stated as about 0.66 (Groom & Particle Data Group, 2000). The proton flux above 1 GeV 
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thus drops by about four orders of magnitude to around 2 1 11 m s sr    or about 

0.001 cm-2 s-1. 

Free protons that manage to reach the underground environment would have an 

extremely short lifetime - even high-energy protons would quickly downscatter in energy. 

Proton-induced interactions typically will occur by elastic scattering; some (p,X) 

interactions are possible, most notably with lead, bismuth, nickel, iron and some lighter 

metals, but these are generally high-energy reactions and genesis of radioxenon by such 

reactions is not possible. Similarly, while 37Ar and 40Ca (and other relevant isotopes) are 

possible yields from some proton reactions (like 56Fe(p,X) for example), the high energy 

 

Figure 6.3 Cosmic ray all-particle flux spectrum, (Swordy, 2001).  
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dependence and low yield numbers for such reactions make them negligible contributions 

to radioargon background levels (Chadwick et al., 2011). 

Muon interactions 

Muons are generated through the decay of charged pions and kaons, which are 

secondary cosmic ray particles (see Figure 6.2). As described in Section 6.2, their 2.2 μs 

proper lifetime means that muons have a substantial chance of reaching ground level 

before decay and therefore should be considered for their potential to produce radioxenon 

and radioargon. The most relevant interaction is muon capture by protons in the 

 

Figure 6.4 Estimated vertical fluxes of cosmic rays in the atmosphere having energy E > 
1 GeV (Groom & Particle Data Group, 2000). 
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subsurface environment; this interaction can be summarized p n     and can 

yield radionuclide products according to:  

  
   

*

*

( , ) 1,

1, 1,

Z A Z A

Z A Z A X X n
     

     
 (6.6) 

where X = 0, 1, 2, ... is the number of free neutrons that determines the product nucleus. 

The potential contribution of such muon interactions to the radioxenon background has 

been considered previously by Hebel (2010) using a production rate expression 

developed by (Charalambus, 1971), which is also adopted here.  

 Given a parent nuclide of (Z,A), the rate of production of isotope ( 1, )Z A X  is 

approximated by  

 ( )i c d rP I x f f f
    . (6.7) 

The factors appearing in Equation (6.7) are as follows16: 

 ( )I x  is the estimated number of negative muons stopped per unit mass per time as a 

function of depth (see Figure 6.5). 

 fc is the fraction of muons reaching the 1s muonic level of the target element and 

therefore capable of being captured. This can be approximated using the Fermi-Teller 

"Z-Law," which has   /
N

c i i n ni
f a Z a Z  where ai and Zi are the abundances and 

charge of each isotope in the medium (Hebel, 2010). 

 fd is the actual fraction of available muons that are captured before muon decay (see 

Figure 6.6. 

 fr is the probability of the excited (Z - 1,A)* nucleus yielding the desired (Z - 1,A - X) 

nucleus (see Table 6.2). 

                                                 
 
16 The equation as it appears in Charalambus (1971) includes an additional factor κ < 1 that accounts for 
variability of the muon intensity based on elevation and latitude. As done in Hebel (2010), this term is 
assumed for generality and simplicity to be equal to 1. 
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Figure 6.5 Stopping rate of negative muons as a function of depth, (Charalambus, 1971). 

 

 

Figure 6.6 Fraction of negative muons captured by the nucleus from the 1s muonic atom 
level as function of the atomic number (left scale), (Charalambus, 1971). 
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Table 6.2 Proposed neutron emission probabilities for use in Equation (6.7), 
(Charalambus, 1971). 

Neutrons emitted 0 1 2 3 4 

fr 0.10< 0.60-0.70 0.15-0.20 0.05 0.02 

 

 

One of the conclusions of the background analysis in Hebel (2010) is that the muon 

contribution to radioxenon soil-gas background levels is negligible (< 1%) compared to 

spontaneous fission levels. A similar analysis utilizing Equation (6.7) is utilized in 

subsequent sections to reproduce and extend Hebel's analysis to include 37Ar production 

from potassium. 

 

6.4 CHARACTERIZATION OF THE NEUTRON FLUX 

A quantification of the subsurface neutron flux depth and energy profiles presents 

the greatest challenge in estimating soil-gas radionuclide background source terms. 

Developing a neutron flux profile from the ground up is a sizable task that extends well 

beyond the transport-centric scope of this work, but an estimate is still needed to 

determine background radionuclide production estimates. Fortunately, a sizable body of 

literature already exists on the subject, and is leaned upon in this section.  

6.4.1 Neutron sources 

Generally, the total underground neutron flux is the product of neutrons from a 

number of different sources that can be categorized as either lithogenic or cosmogenic in 

origin, which distinguishes those neutrons as emanating from sources either within the 
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lithosphere or incoming cosmic rays. Lithogenic sources are comprised mainly of 

neutrons created in fission processes as well as (α,n) reactions. Cosmogenic sources 

include secondary neutrons from cosmic ray spallation as well as muon-induced 

reactions. While lithogenic neutrons are largely independent of subsurface depth and 

mostly a function of elemental composition, the cosmogenic flux is an atmospheric 

source and therefore attenuated as neutrons pass through the geologic medium. These 

sources are discussed briefly here and literature estimates of their contributions are used 

to compile a neutron flux depth profile for various geologies for use in establishing 

neutron-induced radionuclide production source terms. Figure 6.7 shows the major 

contributions to the underground neutron flux as a function of depth and is the model on 

which the flux profile adopted in this section is based (Fabryka-Martin, 1988). 

Fission neutron source 

 Fission neutrons come from both spontaneous and neutron-induced fission of 

natural uranium and thorium in the ground and have a neutron yield of roughly 

12f
n fission

Y  . An estimate of the neutron production due to spontaneous fission is 

therefore a straightforward application of Equation (6.2), as the fission rate is dependent 

only on the isotopic composition of the medium. As illustrated in Figure 6.7, for a 

homogeneous elemental composition, the contribution of spontaneous fission neutrons is 

constant with depth and therefore relatively more important to the neutron flux profile at 

larger depths.   
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Figure 6.7 Neutron production profiled as a function of meters of water equivalent (mwe) 
depth for a high-Calcium granite geology; taken from Figure 2.13 of 
Fabryka-Martin (1988).  

Production of neutrons by neutron-induced fission is itself a function of the 

neutron flux, with a production rate generalized in Equation (6.4). The resulting 

additional contribution to the neutron flux can be arrived at iteratively by first assuming a 

neutron distribution derived only from flux-independent processes and then correcting 

based on production through n-induced reactions. Figure 6.8 shows the neutron fission 

cross sections for the natural uranium and thorium isotopes found in earth. It can be 

shown using this cross section information and Equation (6.3) that the total neutron flux 

necessary for the n-induced fission contribution to be on par with that of spontaneous 

fission is of the order 107 cm-2 yr-1, which it turns out is two orders of magnitude larger 

than the largest neutron fluxes that could be expected in shallow ground. Even with such 
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unrealistically high fluxes, by comparison with other sources in Figure 6.7, this 

contribution would still be negligible. 

(α,n) neutron source 

Alpha particles can emanate from a number of sources in the subsurface 

environment, but are predominantly created through the decay of nuclides of the uranium 

and thorium decay series' with energies between 4.0 and 8.8 MeV (Hebel, 2010). As seen 

in Figure 6.7, like spontaneous fission the (α,n) production rate is relatively constant 

throughout a homogenous underground medium. Cross sections for (α,n) reactions 

underground are high since alpha particles interact strongly with the light nuclei that 

comprise the bulk of the geologic composition. 

 

Figure 6.8 Neutron fission cross sections for 235U, 238U, and 232Th (Chadwick et al., 
2011). 
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Fabryka-Martin (1988) utilizes a method from Feige, et al., (1968) to estimate the 

(α,n) neutron production rate based on a homogenous distribution of all elements within 

the geology. Is has been noted that these estimates, which are adapted here as well, 

should serve as an upper bound estimate. The primary reason for this is that the main 

alpha emitters are generally found in uranite (UO2) and thorium oxide (ThO2) mineral 

phases respectively rather than distributed homogeneously within natural geology 

(Martel, et al., 1990). With grain sizes ordering on several hundred μm, many alpha 

particles created within such minerals are trapped within since the 15-45 μm alpha 

particle mean free path is comparatively small. The result is that alphas created within 

oxide minerals lead to fewer neutron spallation interactions compared to if they were 

produced in a truly homogeneous environment (Hebel, 2010). 

Cosmic ray spallation source 

As seen in Figure 6.7, lithogenic fission and (α,n) sources dominate the neutron 

production at depths of 10-20 mwe. In the very first few meters of ground, neutrons 

emanating as secondary cosmic ray particles from atmospheric interactions dominate. As 

described in Section 6.2, quantification of the cosmic ray neutron flux reaching Earth's 

surface is very complex, as its variability is influenced by geospatial location as well as 

solar activity.  

Given that a neutron flux of ϕ(0) reaches the surface-atmosphere interface, the 

flux can be expected to fall off exponentially. This attenuation as a function of depth, z [g 

cm-2] can be approximated just as in Equation (6.5)  

( ) (0)exp
z

z      
  (6.8) 

where Λ is an attenuation length dependent on the bulk geology density (Riedmann & 

Purtschert, 2011). Typical values of Λ for neutrons in soil/rock media are of the order 
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100-150 g cm-2; a value of Λ = 148 g cm-2 is utilized in Riedmann & Purtschert (2011) 

for the evaluation of the cosmic ray neutron attenuation in "average dry terrestrial" soil. 

Fabryka-Martin (1988) utilizes a similar exponential function to determine the 

attenuation curves in various geologies, one of which is shown as the "Evaporation" of 

cosmic ray neutrons curve in Figure 6.7, which is an estimate of neutron production from 

evaporation and spallation sources of cosmic ray particles. 

Cosmic ray muon source 

As detailed in Section 6.3.2, the length of the muon lifetime allows for cosmic ray 

muons to induce reactions in the subsurface environment. While such interactions when 

considered for the production of individual isotopes might be of minor importance, muon 

reactions as a whole can contribute substantially to the neutronics within the first 10 m of 

ground. The generalized muon-induced reaction (μ-,X·n) of consideration can yield up to 

X = 4 neutrons with substantial probability, according to Table 6.2 (Charalambus, 1971). 

The neutron production from cosmic ray muons can be estimated through application of 

Equation (6.7) with the addition of a neutron yield factor, Yn
μ,X = X and summing over all 

elements and X values. Assuming a homogeneous distribution of elements throughout, 

the only factor appearing in Equation (6.7) that is dependent on depth is the estimate of 

the negative muon stopping rate, Iμ-(x). As a result, the shape of the "muon-capture" curve 

in Figure 6.7 from Fabryka-Martin (1988) is determined by the depth-dependence of 

Iμ-(x) in Figure 6.5. The maximum muon stopping rate occurs at a depth between 

1-2 mwe and has associated with it a neutron production rate on the order of 

100 neutrons/g·y depending on the muon intensity, Iμ-(0), at the surface-atmosphere 

interface. 
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6.4.2 Neutron flux estimate 

Elemental compositions for seven generalized geologies commonly found in the 

environment and utilized in the radionuclide background work here are presented in 

Table E.1 of Appendix E; some of their respective physical properties are listed in Table 

E.2. Neutron production rates as a function of depth calculated based on the various 

mechanisms in Section 6.4.1 were made by Fabryka-Martin (1988); these results are 

tabulated in Table E.3 and plotted in Figure 6.9. The individual components of the total 

neutron source are evident when compared with Figure 6.7. At shallow depths down to 

 

Figure 6.9 Total neutron production rates as a function of depth for the seven geology 
types utilized in neutron flux profiling, as calculated in Fabryka-Martin 
(1988). 
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10 m, cosmogenic neutron sources dominate and the total neutron production rate in this 

region does not vary greatly among the different geological compositions. For deeper 

depths, the estimated contribution of spontaneous fission and (α,n) reactions become 

more important – the “deep lithospheric” neutron production values level off, and are 

determined mainly by the concentration of uranium and thorium in the various geologies. 

The ultramafic rock composition of U and Th is roughly three orders of magnitude lower 

than the other geologies, which accounts for its deep lithospheric neutron production 

value falling much lower than the rest. 

Neutron thermalization 

Evaluation of the neutron flux from estimates of the neutron production profile 

requires an assessment of neutron thermalization from fast energies. This slowing-down 

occurs primarily by elastic scattering of neutrons with oxygen, hydrogen, and silicon 

within the medium. Energy loss through elastic scattering is a function of an energy 

transition probability whose density is typically described in terms of a quantity called 

lethargy, u = ln(E0/E), where E0 is an arbitrary energy used for scaling, nominally the 

highest available system energy. The average lethargy increase per elastic collision can 

be written  

0ln ( )
E

E

E
u P E E dE

E
        

   

where α is defined  2
( 1) / ( 1)A A     and αE is the minimum energy of a scattered 

neutron from a target of atomic mass A. For hydrogen (A = 1), this energy loss term is 

1.00; for scattering from heavier nuclei, this average can be approximated by 

Equation (6.9) (Lamarsh, 2002).  

2
3

2
i

iA
 


  (6.9) 
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Neutron capture before thermalization must also be taken into account, the 

probability of which is quantified for particular elements by a dilute resonance integral, Ii, 

which has the units of a cross section [cm2]. The total effective resonance integral, Ie 

[cm2 g-1] for a bulk rock medium is then  

e i i
i

I N I                 (6.10) 

where Ni is the atom density of component i in [atoms/g]. Evaluation of Equations (6.9) 

and (6.10) for the rock compositions listed in appendix Table E.1 have been made in 

Fabryka-Martin (1988).  

The probability of neutron thermalization, or resonance escape, can be expressed  

,( ) exp /th e i i s i
i

p E I N  
  

 
   (6.11) 

where σs,i is the scattering cross section of neutrons from atoms of element i (Glasstone & 

Edlund, 1952). 

Thermal and epithermal neutron flux 

Neutrons that reach thermal energies can be expected to be quickly absorbed in 

the bulk rock matrix. Similar to Equation (6.10) for the resonance capture of neutrons, the 

total effective (macroscopic) absorption cross section for thermal energies can be 

expressed  

,a i a i
i

N      (6.12) 

where σa,i is the microscopic absorption cross section [cm2] of neutrons for element i. 

Values for thermal macroscopic absorption cross sections range from 0.011 cm2 g-1 to 

0.0042 cm2 g-1 for water saturated carbonate and clay/shales respectively.   

Given the neutron production profiles, Pn, in Table E.3, the effective resonance 

integral of Equation (6.10), the resonance escape probability of Equation (6.11), and the 
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total thermal macroscopic absorption cross section of neutrons of Equation (6.12), the 

total neutron flux can be conveniently divided into thermal and epi-thermal components  

( ) ( )n n th n thE E      

with  
( )

( ) and ( ) (1 ( ))th n n
n th n th th

a e

p E P P
E E p E

I
    


. (6.13) 

Values for the thermal and epithermal neutron fluxes calculated with Equation (6.13) as a 

function of depth are presented in Table E.6 of Appendix E. Two sets of these flux 

profiles for hi-Ca granite and clay/shale geologies are plotted in Figure 6.10 for 

illustration. 

 

Figure 6.10 Estimated thermal and epithermal neutron flux depth profile from the values 
in Table E.6 for two of the geologic compositions considered in this work. 
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Neutron spectrum assumption 

The division of the neutron flux into thermal (Eth) and epithermal (>Eth) 

components is one of the most simplistic assumptions; for reactions that heavily favor 

thermal neutrons this is indeed a fair approximation.  A more generalized utilization of 

Equation (6.4) for the evaluation of neutron-induced reaction rates beyond the thermal 

regime requires some additional assumption be made for the treatment of the epithermal 

region of neutrons. This can be approached by adopting an assumed neutron spectral 

shape, which can be scaled so that the total integrated flux is equal to values estimated by 

Equation (6.13). 
 

In Figure 6.11 is presented one assumption of the neutron spectrum compiled by 

Hebel (2010) based on flux measurements made by Chazal et al. (1998) at the 

Laboratoire Souterrain de Modane very deep underground. A particular feature of this 

assumption is the 2.4 MeV peak due to 238U spontaneous fission neutrons which is more 

appropriate to the deep underground case where fission neutrons are more likely to 

dominate the neutron flux. The results presented in the present work are based on the 

Modane spectrum assumption in Figure 6.11, though other shapes were considered as 

well that model a flatter fast neutron spectrum without the 2.4 MeV peak. In particular, 

the "Stripa granite" assumption adopted in Hebel (2010) based on measurements in 

Stripa, Sweden were used as well and yielded results that differed little from the Modane 

spectrum (Andrews, et al., 1986). The general shape of the neutron spectrum does not 

greatly alter calculated estimates, which are generally more dependent on the magnitude 

of thermal flux. The major point of difference between a 200 m spectrum and a 1-5 m 

spectrum is the 2.4 MeV fission neutron peak, but this difference is not large enough to 
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even greatly affect estimates of 232Th fission (Figure 6.8) and 40Ca activation (Figure 

6.13), cross-sections for both of which favor fast neutron reactions.  

 

6.5 RESULTS OF BACKGROUND CALCULATIONS 

6.5.1 Radioxenon background 

Radioxenon natural background production was quantified for the seven 

geologies whose compositions are listed in Table E.1, based on both spontaneous fission 

and neutron-induced fission of natural uranium and thorium. These elemental 

compositions, along with natural isotopic abundances and the bulk geological densities of 

Table E.2, were used to estimate the atomic densities of U and Th within the various 

 

Figure 6.11 Neutron spectrum estimate made by Hebel (2010) based on deep 
underground neutron flux measurements taken at Modane by Chazal et al. 
(1998).  
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geology types, shown in Table 6.3. From these densities and the estimated subsurface 

neutron flux of the previous section, the spontaneous and neutron-induced fission 

production rates of xenon were calculated using Equations (6.2) and (6.4) respectively 

with cumulative fission yields acquired from England & Rider (1995) and Koning & 

Rochman (2011). 

 

Spontaneous fission production rates, Pi
sf, of radioxenon as well as radioactive 

decay equilibrium concentrations are given in Table F.1 of Appendix F. Radioactive 

equilibrium concentrations, for any production mechanism, are calculated according to  

0i
i i i

dN
P N

dt
    

eq
iiA P   (6.14) 

Calculated neutron-induced fission production rates of radioxenon for select depths of 

geology are given in Table F.2 of Appendix F.  

 

Table 6.3 Uranium and thorium percent natural isotopic abundances and atom densities 
as determined from the elemental compositions of Table E.1 and bulk 
densities of Table E.2. 

 

N (atoms/cm3) 
Element A Natural

% 
ultramafic basalt hi-Ca 

granite
low-Ca 
granite

clay/shale sandstone carbona

Th 232 100 2.91E+13 2.91E+16 5.96E+16 1.19E+17 6.85E+16 1.01E+16 1.19E+

U 234 0.006 3.96E+08 3.96E+11 1.15E+12 1.15E+12 1.09E+12 1.46E+11 8.41E+

235 0.720 5.17E+10 5.17E+13 1.49E+14 1.49E+14 1.42E+14 1.91E+13 1.10E+

238 99.28 7.03E+12 7.03E+15 2.03E+16 2.03E+16 1.93E+16 2.60E+15 1.49E+
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Figure 6.12 shows a plot of the neutron-induced and spontaneous fission 

production rates of 133Xe for four of the seven geologic compositions considered in this 

work. In the very shallow, first 1-5 m of bulk medium where the cosmic ray neutron flux 

is highest, the neutron-induced fission contribution to the 133Xe background is roughly 

two orders of magnitude smaller than the spontaneous fission contribution. Estimates 

from Table F.1 and Table F.2 for the other radioxenon species indicate that the same 

holds true. At larger depths, especially below 10 m, the spontaneous fission contribution 

is greater by closer to four orders of magnitude, as the cosmic ray neutron flux is almost 

entirely attenuated and the neutronics driven by fission and (α,n) neutrons (Figure 6.7).  

 

Figure 6.12 Estimated spontaneous and neutron-induced fission production rates (in 
mBq/m3/s) of 133Xe for four specific geological compositions to a depth of 
1000 mwe. 
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6.5.2 Radioargon background 

40Ca(n,α)37Ar interactions 

Figure 6.13 shows the cross section for neutron activation of 40Ca, which is 

regarded as the most direct and relevant production path for 37Ar in the environment 

(Egnatuk et al., 2012; Riedmann & Purtschert, 2011). The 40Ca target atom densities 

determined from the elemental compositions of Table E.1 and bulk densities of Table E.2 

are given in Table 6.4. These target densities and the approximated neutron flux from 

Section 6.4.2 were used in an evaluation of Equation (6.4) to obtain the calculated values 

for the 37Ar production rates and radioactive equilibrium concentrations resulting from 

neutron activation of 40Ca given in Table F.4. Figure 6.14 plots the 37Ar concentration 

curves versus depth along with the proposed 20 mBq/m3 field system detection limit for 

comparison. 

 

 

Figure 6.13 Neutron activation cross section of 40Ca for the reaction 40Ca(n,α)37Ar, from 
data found at Chadwick et al. (2011). 
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Table 6.4 Potassium and calcium percent natural isotopic abundances and atom densities 
as determined from the elemental compositions of Table E.1 and bulk 
densities of Table E.2. 

N (atoms/cm3) 
Element A Nat % ultramafic basalt hi-Ca 

granite 
low-Ca 
granite 

clay/shale sandstone carbonate

K 39 93.26 1.61E+18 3.35E+20 9.80E+20 1.63E+21 7.88E+20 3.54E+20 1.05E+20

40 0.012 1.97E+14 4.09E+16 1.20E+17 2.00E+17 9.64E+16 4.33E+16 1.28E+16

41 6.730 1.11E+17 2.30E+19 6.73E+19 1.12E+20 5.41E+19 2.43E+19 7.21E+18

Ca 40 96.94 1.02E+21 3.11E+21 9.97E+20 2.01E+20 8.86E+20 1.31E+21 1.19E+22

42 0.647 6.49E+18 1.97E+19 6.34E+18 1.28E+18 5.63E+18 8.34E+18 7.57E+19

43 0.135 1.32E+18 4.02E+18 1.29E+18 2.60E+17 1.15E+18 1.70E+18 1.54E+19

44 2.086 2.00E+19 6.08E+19 1.95E+19 3.93E+18 1.73E+19 2.57E+19 2.33E+20

46 0.004 3.67E+16 1.11E+17 3.58E+16 7.21E+15 3.18E+16 4.71E+16 4.27E+17

48 0.187 1.64E+18 4.99E+18 1.60E+18 3.23E+17 1.42E+18 2.11E+18 1.91E+19

 

 

 

Figure 6.14 Estimated 37Ar equilibrium concentrations resulting from 40Ca neutron 
activation in the subsurface and the 20 mBq/m3 proposed detection limit. 
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K(μ,X·n) reactions 

As introduced in Section 6.3.2, another potential avenue for 37Ar production in the 

environment is through the muon interaction in Equation (6.6), which can be summarized 

as: 37+XK(μ,X·n)37Ar where X is the number of free neutrons that result from the 

compound reaction. Table 6.5 lists the possible potassium isotopes with corresponding X 

free neutrons that can yield 37Ar through muon interaction. Of the possible candidates for 

interaction, 37K and 38K are not expected to be present naturally in the geologies, as 

shown in Table 6.4 and so are excluded from consideration. 

 An estimate of the 37Ar production rate is made using Equation (6.7), with muon 

stopping rate versus depth obtained from Figure 6.5 and values for fd and fr estimated 

from Figure 6.6 and Table 6.2 respectively. The fraction of muons, fc reaching the 1s 

muonic level of potassium is approximated using the Fermi-Teller "Z-Law," which has 

  /
N

c i i n ni
f a Z a Z  where ai and Zi are the abundances and charge of each isotope in 

the various media (i.e. from Table E.1) (Hebel, 2010).  

 

  

Table 6.5 Possible values for X free neutrons in the muon interaction with potassium that 
yield 37Ar. 37K and 38K are not expected to contribute due to low abundance. 
Estimated values for fd and fr from Figure 6.6 and Table 6.2 respectively. 

37+XK(μ,X·n)37Ar reaction possibilities 
A X fd fr 

37 0 - - 

38 1 - - 

39 2 0.8 0.15 

40 3 0.8 0.05 

41 4 0.8 0.02 
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 Results of these calculations for 37Ar equilibrium concentrations are listed in 

Table F.5. An estimate of the total 37Ar soil-gas background concentration obtained from 

addition of 40Ca activation and potassium-muon interactions is given in Table F.6. Figure 

6.15 shows a plot of the various contributions to the 37Ar radioactive equilibrium 

concentrations for the case of hi-Ca granite. As in all of the geologies, the greatest muon-

interaction contribution comes with 39K by roughly two orders of magnitude. In this 

particular case, the muon contribution appears to be potentially comparable to the 

40Ca(n,α)37Ar within the first 10 m of depth. It must be stated, however, that the 37Ar 

production by muon interaction calculated here should be regarded as a maximum 

potential contribution. What is not considered in Equation (6.7) is a true assessment of 

the scaled muon intensity; this equation as it appears in Charalambus (1971) includes an 

 

Figure 6.15 Estimated 37Ar equilibrium concentration profiles resulting from various 
K(μ,X·n) reactions compared to 40Ca neutron activation for the Hi-Ca 
granite geological composition. 
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additional factor κ < 1 that accounts for variability of the muon intensity based on 

elevation and latitude. The maximum value κ = 1 is assumed here for generality, so the 

results presented here are also a maximum estimate. 

 

6.6 MODELING OF BACKGROUND 

The entirety of this chapter has been dedicated to establishing natural background 

radioxenon and radioargon production rates as a function of depth in various geologies. 

To this point, no mention has been made of transport - the "equilibrium" values discussed 

thus far and listed in the tables of the Appendix are radioactive equilibrium values as 

determined through the balancing of nuclide production versus decay rates in Equation 

(6.14). This equilibrium state implicitly assumes a closed system - that there are no loss 

terms due to removal of gas from the system, which is not what would be expected in a 

true physical system. 

The greatest attention is typically paid to soil-gas backgrounds in the first few 

meters of ground where simple analytical diffusion and advection approximations should 

provide decent approximation. For the case of 37Ar in particular, such approximations 

have been well-supported by experimental data (Riedmann & Purtschert, 2011). The aim 

in this chapter was to establish a similar radionuclide background capability within the 

UTEX model, where transport is simulated to arbitrary depths along fracture networks. 

6.6.1 Radionuclide emanation 

Soil-gas radionuclides are produced within the mineral or grain structure of the 

bulk geologic medium, rather than in the air-filled porous volume. The physical 

parameter porosity, ϕ (not a flux), refers to the ratio of porous volume to the total bulk 

volume of a medium, which includes both porous and non-porous volumes. Before 
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transport of radionuclide gas can be simulated, the fraction of produced gas that emanates 

from the mineral structure of the rock medium into the air-filled volume must be taken 

into account. Unfortunately, despite decades of research especially with respect to radon, 

gas emanation is not a very well understood phenomenon. 

Emanation of gas is generally defined in terms of an emanation coefficient, ε, that 

describes the ratio of air concentration of gas (Cair) to the maximum possible 

concentration within the mineral structure (Crock) (Riedmann & Purtschert, 2011), from 

which  
1

air rockC C





 .  (6.15) 

 

Table 6.6 lists ranges of values for the Cair/Crock ratio for a span of values on the 

porosities and emanation coefficients. Table 6.7 is adapted from Hebel (2010) and gives 

an overview of the porosity and emanation coefficient values possible for various rock 

types as well as their rough elemental equivalent to the geologies defined in Table E.1.  

Looking at Table 6.6 and Table 6.7, the ratio Cair/Crock spans a range from ε = 0.01 

to roughly ε = 50, which is nearly four order of magnitude. Furthermore, within a given 

rock type such as granite, the same ratio estimate can easily vary by nearly two orders of 

magnitude; this variation is even greater for less well-defined soil types whose porosities 

are not easily determined. For this reason, radionuclide gas emanation is not greatly 

explored in this work and is regarded, in the present work at least, as a means for 

bounding maximum soil-gas concentrations. 
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Table 6.6 Ranges of values for the ratio Cair/Crock in Equation (6.15). 

for the following column ε 
  0.01 0.02 0.03 0.05 0.1 0.2 0.3 0.4 0.5 

0.01 99.0 0.99 1.98 2.97 4.95 9.90 19.80 29.70 39.60 49.50 
0.05 19.0 0.19 0.38 0.57 0.95 1.90 3.80 5.70 7.60 9.50 
0.1 9.0 0.09 0.18 0.27 0.45 0.90 1.80 2.70 3.60 4.50 
0.2 4.0 0.04 0.08 0.12 0.20 0.40 0.80 1.20 1.60 2.00 
0.3 2.3 0.02 0.05 0.07 0.12 0.23 0.47 0.70 0.93 1.17 
0.4 1.5 0.02 0.03 0.05 0.08 0.15 0.30 0.45 0.60 0.75 
0.5 1.0 0.01 0.02 0.03 0.05 0.10 0.20 0.30 0.40 0.50 

Table 6.7 Ranges of porosities and emanation coefficients for various rock types as well 
as their approximate elemental equivalence to geologic compositions of 
Table E.1; adapted from Table 4.2 of Hebel (2010). 

rock type ε (%) density (g/cm3) porosity (%) Elemental Equivalent 
granite 6.8 - 32.7 2.75 0-5 - 1-5 hi-Ca granite 

granodiorite 16.9 - 40.0 2.76 0.5 . 1.5 low-Ca granite 
gneiss 1.0 - 14.4 2.75 0.5 . 1.5 hi-Ca granite 

syenite 9.3 2.79 0.5 . 1.5 low-Ca granite 
pegmatite 4.3 2.75 0.5 . 1.5 hi-Ca granite 

gabbro 3.6 3.01 0.1 . 0.2 basalt 
basalt 2.5 3.01 0.1 . 1.0 basalt 

quartzite 5.3 2.7 0.1 . 0.5 sandstones 
sandstone 5.2 2.32 5 - 25 sandstones 

marl 2.6 2.1 < 10 carbonate / sandstones 
tuff 1.7 1.8 1 - 53 basalt 

limestone 1.6 2.3 5 - 20 carbonate 
soil, granite 46 1.7 < 40 hi-Ca granite 

soil, lime 33 1.6 < 40 carbonate 
soil, clay 30 1.8 < 40 clays 
soil, sand 9 1.6 < 40 sandstones 

soil, volcanic 49 1.8 < 40 basalt 
monazite sand 9 - 49 3 < 40 - 
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6.6.2 Radionuclide background modeling 

Like many aspects of transport simulation within the UTEX framework, actual 

analysis of modeled soil-gas background transport is a difficult task due to so many 

variables affecting the problem. That said, it is not difficult to predict the affect that 

transport should have on the soil-gas background. In the top few meters of earth, the 

influence of direct vertical diffusion and advection of gas into the atmosphere has been 

considered previously (Johnson & Biegalski, 2012; Riedmann & Purtschert, 2011). The 

result is that the radioactive equilibrium concentrations are reduced due to an additional 

loss term. As seen in the results from Johnson and Biegalski (2012) in Figure 6.16, the 

radionuclide concentration falls off near the surface as gas escapes into the atmosphere. 

What results is likely a flow of soil-gas develops vertically towards the surface that is 

 

Figure 6.16 Estimated 133Xe soil-gas background concentrations near 240Pu contaminated 
site resulting from spontaneous fission of 240Pu (near the top) and 238U 
(distributed throughout) following different times of simulation with 
diffusion and advection; data from Johnson and Biegalski (2012). 
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dependent on the physical parameters of the geology as well as the rate of advection due 

to pressure differentials in the system. At greater depths, these simpler models estimate 

an asymptotic level of soil-gas backgrounds. Background concentrations near cracks in a 

fractured medium would be expected to show a similar affect as the concentrations near 

the surface - a pressure-dependent flow of gas should arise into (or out of) open fractures. 

In the present work, the emphasized goal now that a soil-gas background source 

term has been defined in Section 6.5 is to establish the capability of the UTEX model to 

integrate it into its more general source term module. One drawback to having simply 

adopted values for the radionuclide background from the literature is that the focus of 

such studies is typically on quantifying radioactive equilibrium using cumulative yield 

estimates for radioxenon. The difficulty with this is that the UTEX source term handling 

includes its own Bateman equation solver, which for the case of radioxenon modeling, 

requires independent yield data. Essentially, supplying cumulative yield input for 133Xe 

and 135Xe would substantially overestimate those background concentrations as 133mXe 

and 135mXe decay would be counted twice. While there are workarounds to this, use of 

independent yields for xenon and cumulative yields for iodine facilitates a smoother 

integration into the existing UTEX framework. 

Figure 6.17 shows simulated soil-gas concentration curves of radioxenon and 37Ar 

as a function of distance from fractures at a depth of 5 m (roughly 14 mwe) in granite 

after 14 days. Again, the specific characteristics of the concentration curves near open 

fractures are dependent on the dynamic system barometrics. As a demonstration of this, 

Figure 6.18 shows concentration curve calculations from UTEX modeling of 37Ar natural 

soil-gas background at several time points during the simulation. At time t = 0, the 

system concentrations are set at values that would be expected in a closed geologic 

system; i.e., with the emanation-adjusted depth-dependent concentrations from Appendix 
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F distributed throughout the bulk medium (and zero initial concentration in fractures). As 

time progresses, soil-gas is allowed to flow out of the bulk medium into the fractures.  

At certain times of increasing pressure flow into the fracture can be inhibited or in 

fact reversed, such as the 'Day 12' and 'Day 14' example curves in Figure 6.18. These 

specific curves correspond to system states flow is directed into the bulk medium, and 

concentration near open fractures begin to build up. Figure 6.19 shows concentration 

curves of 37Ar for vertical cuts of the bulk medium at distances of 2 cm and 50 cm from 

open fractures at different intervals during the same 14 day simulation17. As concluded 

                                                 
 
17 The vertical resolution of simulations were 4 m granite, or roughly 11 mwe. The first vertical data point, 
therefore, is significantly below the maximum concentration at shallower depths (<10 mwe).  

 

Figure 6.17 Simulated radionuclide background concentrations curves in [mBq/m3] at 
5 m depth granite (about 14 mwe) following 14 days of transport in UTEX. 
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from Figure 6.18, at only 2 cm from the fracture (top plot of Figure 6.19), the 

concentration curve is strongly influenced by the exchange of gas with the open fracture - 

this is particularly evident again at days 12 and 14 where the curves show a rise 

compared to previous days. Deeper within the bulk medium (bottom plot of Figure 6.19), 

the influence of fracture-matrix exchange is barely felt, as the curves at different times 

are hardly distinguishable. 

6.6.3 Soil-gas Xe ratios 

Lastly, a cursory examination of the radioxenon isotopic ratios was made 

following UTEX simulated 14-day transport of the soil-gas background source term. In 

short, the effects of gas transport on the relative isotopics of xenon during test 

simulations were unnoticeable. Figure 6.20 shows (overlapping) isotopic ratios of 

radioxenon at a simulated point corresponding to 5 m depth and 2 cm from open fracture 

for various times through a 14-day simulation. This result is not altogether surprising, 

however, given that the radioxenon background source production is constant in time and 

ratios calculated from data in Table B.3 are nearly identical as a function of depth. The 

result of this is a minimization of the source mixing that characterizes significant 

fluctuations in the radioxenon isotopics resulting from a deeper, more localized source. 
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Figure 6.18 Simulated horizontal radionuclide background concentrations curves in 
[mBq/m3] at 10 m and 200 m depth granite (about 14 mwe) at different 
intervals during 14 days of transport in UTEX. 
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6.7 CONCLUSIONS 

In this chapter a characterization and evaluation of the soil-gas radionuclide 

background has been made. For the case of radioxenon, in the very shallow, first 1-5 m of 

bulk medium where the cosmic ray neutron flux is highest, the neutron-induced fission 

contribution to the xenon background is still roughly two orders of magnitude smaller 

than the spontaneous fission contribution. At larger depths, especially below 10 m, the 

spontaneous fission contribution is greater by closer to four orders of magnitude, as the 

cosmic ray neutron flux is almost entirely attenuated and the neutronics driven by fission 

and (α,n) neutrons. The total xenon background production rates (and equilibrium 

activities) are given in Appendix Table F.3. For 133Xe, these estimated concentrations 

(discounting the effects of emanation) in the shallow surface are of the order 

0.1-1.0 mBq/m3. These total estimates are similar to those made by Hebel (2010) for very 

shallow geologies. The nature of gas emanation in a porous environment was not 

thoroughly explored in this work, but as suggest by Hebel (2010) and others, emanation 

marks a great uncertainty within soil-gas background calculations and thus warrants 

further study. 

An estimate of the total 37Ar soil-gas background concentration obtained from 

addition of 40Ca activation and potassium-muon interactions is given in Table F.6. The 

greatest muon-interaction contribution comes with 39K by roughly two orders of 

magnitude. In this particular case, the muon contribution appears to be potentially 

comparable to the 40Ca(n,α)37Ar within the first 10 m of depth, as shown in Figure 6.15. 

It must be stated, however, that the 37Ar production by muon interaction calculated here 

should be regarded as a maximum potential contribution. The total estimated 37Ar soil-

gas background at shallow depths was found to vary substantially based on the estimated 

40Ca and potassium content in the geology, but was of the order 50-200 mBq/m3. These 
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maximum estimates are comparable to the measurements made by Reidmann & 

Purtschert (2011) in the top few meters of soil.  

The soil-gas background estimates were integrated into the UTEX model to 

examine the effect of gas transport on the equilibrium concentrations. As expected, the 

concentrations varied greatly based on the nature of the barometric pressure as well as 

depth in the ground and distance from open fractures. Deep within the modeled system, 

the radioactive decay equilibrium concentrations were affected much less at points closer 

to the fractures. Lastly, likely due to the proximity and homogeneity of the modeled soil-

gas background source, simulation of gas transport within UTEX showed very little 

impact on the isotopic ratios of xenon. 
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Chapter 7: On-site Inspection Science 

7.1 ON-SITE INSPECTION OVERVIEW 

With respect to the CTBT verification regime, radionuclide detection has an 

importance in both atmospheric monitoring within the IMS as well as in an OSI. For the 

most part, the particular relevance of examining noble gas transport mechanics and their 

effects on isotopic ratios in this work is in the interpretation of trace signatures in soil-gas 

samples obtained through an on-site inspection. In the search for radionuclide evidence of 

a potential UNE, the major factors that inhibit gas reaching detectors are geologic 

containment and radioactive decay. In a technically well-contained UNE event, assuming 

there is no rapid venting of gas and particulate material, eventual release of gas from the 

ground can still occur by slow migration through porous and fractured media, driven in 

large part by the evolution of atmospheric pressure above the contaminated ground 

(Auer, et al., 1996; Carrigan et al., 1997; Nilson et al., 1991).  

Prompting for an OSI might follow a seismic reading or elevated radionuclide 

gas/particulate atmospheric concentration measurement by stations within the IMS. In 

such a case, a suspected event’s potential location might be estimated through seismic 

data analysis and atmospheric transport modeling of the radionuclide source. The goal of 

an on-site inspection, then, would be to obtain localized evidence of a subsurface 

radionuclide source given pre-determined target area. In particular, soil-gas levels of 

131mXe, 133Xe and 37Ar significantly above subsurface background are widely regarded as 

extremely strong indicators of a recent UNE (Purtschert et al., 2007; Saey, 2007).       

Upon an on-site inspection team’s arrival and set up of a base of operations (BoO) 

in the field, a selection of several dozen target sampling sites in the general region of the 
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suspected event must be made within the negotiated inspection areas.18 For each 

sampling site, a 5-10 m depth borehole, roughly 2” in diameter is made in the ground. A 

gas sampling tube is placed into the hole, connected to a pump, and the hole is back-filled 

or packed to isolate the subsurface sampling point from the atmosphere. Soil-gas is 

pumped from the sampling point at a rate on the order of 1 L/minute and collected and 

compressed into high-pressure gas bottles. The conceptual design of a subsurface 

sampling unit is shown in Figure 7.1. Ar and Xe gas may be separated from the various 

samples at the BoO and then counted on field systems such as the SAUNA or ARIX 

(radioxenon counting) or the Chinese MARDS (37Ar counting) (Saey, 2007). 

                                                 
 
18 It is within the power of the Inspected States Party to block access to square restricted areas (RA) 2 km 
on a side. 

 

Figure 7.1 On-site inspection soil-gas sampling concept, illustration adapted from 
Carrigan & Sun (2012). 
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Timing of deployment of an OSI team is likely to be critical in the assessment of 

any suspected UNE event for a number of reasons. Given the time it takes to proceed 

from an initial IMS measurement trigger to the localization of a possible event area, 

political considerations and the granting of permission to perform the inspection, and 

practical allotment of time for deployment of a team and equipment to a potentially 

remote location, the time window for an on-site inspection deployment likely begins 

10-14 days following the suspected UNE. In that time frame, prompt venting and slower 

emanation of radionuclide gas driven by cavity over-pressurization will most likely have 

concluded. Carrigan & Sun have conducted studies indicating that while the initial cavity 

pressure may have equalized in this time period, the large thermal gradients resulting 

from the UNE may have not. In this case, subsurface convection could still actively draw 

gas towards the surface through the fractured network, and ultimately enhance the 

likelihood of noble gas detection at the surface (Carrigan & Sun, 2011). 

Driven by the initial cavity pressure and thermal convection, within the days and 

weeks following a UNE event a contaminant halo will have formed in the fractured rock 

area around the original cavity as well as perhaps a debris chimney, depending on 

whether the cavity collapses. The exact settling of the cavity, chimney, and surrounding 

fractured rock will all affect the distribution of radionuclide-containing gas in the halo. 

Even in the case of a well-contained UNE, it may be possible for the early noble gas halo 

to extend upwards hundreds of meters from the cavity with "detectable" amounts of 133Xe 

and 37Ar driven to the surface even within the first couple of days, though too small to be 

eventually detected by IMS stations after atmospheric dilution (Carrigan & Sun, 2011). In 

the time frame of active OSI soil-gas sampling, weeks following a suspected UNE event, 

noble gas leakage from the ground would be driven more and more by the slower action 

of barometric pumping.  
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7.2 ON-SITE INSPECTION CHALLENGES 

Despite the supposed proximity of on-site inspection sampling to an estimated 

UNE event's location, the search for subsurface soil-gas evidence can be like looking for 

a needle in a haystack. Due to the nature of geologic fracture and fault systems, on-site 

inspections likely would not serve well in further reducing potential target search areas. 

Even presuming that a true UNE has occurred and the target area of the event is well-

estimated, the success of an on-site inspection effort in obtaining soil-gas radionuclide 

evidence of such faces a number of challenges. Questions of where, when, and how to 

conduct soil-gas sampling with the best chance of noble gas detection is of course the 

subject of much research, including the present work. 

7.2.1 Sampling location 

Transport of UNE-produced gas to the surface takes place predominantly in 

vertically-trending fracture networks within the underlying geology. Such vertical 

transport pathways can be characteristic of the natural geology or created as a result of 

the extreme pressure and heat from a UNE. Knowledge of the underlying geology in a 

target search area can therefore be regarded as one of the greatest tools for enhancing the 

success of on-site inspection efforts. Unfortunately, such knowledge cannot be presumed. 

The capability of an on-site inspection team to visibly identify fractures in the bedrock is 

limited by alluvium coverage on the surface and field methods of examining the 

subsurface structure (e.g. ground penetrating radar) is likely to be of too poor resolution 

for the identification of small fracture networks. 

For barometric pumping to be effective as a means of driving vertical transport of 

noble gas to the surface, pressure variations in the atmosphere must propagate into the 

subsurface environment. One effect of an especially thick top alluvium layer could be the 

effective isolation of the underlying fractured bedrock from surface changes in pressure. 
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Even if a borehole could be penetrate through the alluvium into the fractured medium 

below, the inhibited effect of barometric pumping may not be strong enough to induce 

gas transport into the sample region. The presence of such an alluvium layer presents one 

of the largest hurdles to OSI success.  

7.2.2 Sampling timing 

A major conclusion of the 1996 Non-Proliferation Experiment (NPE) and one of 

the fundamental principles behind the concept of barometric pumping is that vertical 

transport of gas in a fractured network is driven by atmospheric pressure fluctuations and 

the largest surface releases are likely to coincide with deep, extended pressure lows 

(Carrigan et al., 1997; Nilson et al., 1991). Similar to the capability to locate underlying 

fractured media and transport pathways, targeted sampling during periods of decreasing 

atmospheric pressure has been proposed as one strategy for maximizing the success 

potential of soil-gas sampling (Carrigan & Sun, 2011).    

So-called barometrically-triggered sampling, however, is not entirely 

straightforward to implement into a generalized on-site inspection procedure. Of primary 

difficulty is the fact that soil-gas sampling is in large part limited by flow rate and 

sampling times of 1-2 -days are likely needed for radioxenon and radioargon analysis. In 

other words, targeting a specific barometric low covering a sampling period of 1-2 hours 

is likely to be too low volume for radionuclide analysis. How to integrate targeted 

sampling windows that span 24 hours or more into regular on-site inspection procedure is 

one important issue requiring further study. 

7.2.3 Sampling practice 

Standard OSI practices and procedures remain a work in-progress, but one of the 

largest questions faced is with regard to the potential for atmospheric infiltration at a 
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sampling point. This is a potential concern both as a contribution to soil-gas backgrounds 

as well as direct surface air invasion down a permeable backfilled borehole. Evaluation of 

the range of the magnitude of such effects is one point of investigation in the following 

sections. Additionally, one active method for preventing infiltration is to prepare on the 

surface a plastic tent or tarp above the sampling point to isolate the borehole and 

immediate sampling area from the atmospheric gas invasion. How effective this practice 

is at combating infiltration and the degree to which it might inhibit barometric pumping is 

a matter of ongoing research. 

Conceptually, soil-gas sampling at a given location is traditionally conducted with 

a single sampling tube down a single borehole. It has been proposed that moving from a 

single sampling point to a distributed sampling strategy with multiple sampling points per 

location can yield a higher likelihood of detection of soil-gas radionuclides when the 

underlying fracture network is uncertain (Carrigan & Sun, 2011). The advantage of such 

a "more is better" approach is intuitively clear, however, the field resources available to a 

small on-inspection contingency greatly restrict the number of boreholes and sampling 

sites that can be prepared in short time. Ultimately, the benefit of increasing the number 

of sampling points per given location would have to be weighed against potentially 

reducing the number of locations within a larger target area that can be investigated - a 

more in-depth investigation covering smaller area versus a broader, less thorough one.           
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7.3 ATMOSPHERIC INFILTRATION 

Susceptibility of an OSI soil-gas sampling effort to infiltration of atmospheric air, 

and any trace radionuclide concentrations that it might contain, is a matter of critical 

uncertainty within the current inspection operations strategy. In essence, the problem of 

atmosphere invasion into the subsurface environment is the reverse of gas being drawn 

out of the ground through a fractured system. Just as periods of decreasing atmospheric 

pressure would tend promote gas withdrawal from the ground, an increasing pressure 

would tend to push atmospheric air into the ground along vertically-trending fractures. 

This air could then mix with soil-gas. 

 

Figure 7.2 Cartoon illustration of the atmospheric infiltration concept where 
radionuclide-containing air from the atmosphere can be distributed 
underground, potentially interfering with soil-gas sampling for evidence of a 
subsurface radionuclide source.   
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Atmospheric infiltration is of potential concern in two somewhat distinct ways. 

The first is in a scenario along the lines described above - the potential mixing of 

atmospheric gas with soil-gas could in certain circumstances cast a reasonable 

uncertainty on the exact source of the signature found in a soil-gas sample. For instance, 

take as a hypothetical situation a case of a suspected UNE in a location that is also not too 

distant from a commercial nuclear power reactor or medical isotope production facility 

(see Figure 7.2). If a radionuclide-containing plume is released and carried in the 

atmosphere over the area of the suspected UNE, what potential fraction of the plume 

radionuclide concentration can be distributed in the ground due to barometric 

fluctuations? A second atmospheric infiltration concern in an on-site inspection sampling 

effort is with regard to the actual in-hole effects of pumping on the underground volume, 

and will be considered more in Section 7.4 in borehole-specific modeling. 

As a first step towards an examination of the possible effects of atmospheric 

infiltration into the ground, a case study was made of a radioxenon-containing plume 

above an initially uncontaminated vertical-fracture system, and the resulting subsurface 

infiltration was simulated for seven days. An estimate of the plume concentrations (Table 

7.1) were obtained from data presented in Klingberg et al., (2012) for a an estimated 

radioxenon release from the Oak Ridge National Laboratory (ORNL) high flux isotope 

reactor (HFIR) and subsequent atmospheric dilution calculated through NOAA 

HYSPLIT19 modeling (see Figure 7.3).  

 

                                                 
 
19 National Oceanic and Atmospheric Administration (NOAA); HYbrid Single-Particle Lagrangian 
Integrated Trajectory (HYSPLIT), (Draxler & Rolph, 2003). 
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The average plume concentrations from Table 7.1 were utilized as input into 

UTEX model simulations for the top boundary of the vertical fracture-system. This 

atmospheric concentration of xenon was held constant for a simulation period covering 7 

days of transport, thus this illustrates somewhat of a worst-case scenario in that such 

plumes are hardly constant in time. Nevertheless, by holding source concentration 

constant in time, the effects of the barometric driver on the transport are more easily 

Table 7.1  Average and maximum radioxenon concentrations in the NOAA Hysplit 
atmospheric dilution model for ORNL plume release, from Klingberg et al. 
(2012). "Average" values were used in the atmospheric infiltration case 
study. 

 Concentration (Bq/m3) 

Isotope Average Maximum 
131mXe 1.21E-3 3.43E-3 
133Xe 8.87E-4 6.21E-3 
133mXe 1.30E-4 3.65E-4 
135Xe 2.86E-4 6.82E-4 

 

 

Figure 7.3 Simulated atmospheric dilution of ORNL high flux isotope reactor release, 
1-hr integrated following 1 day of transport. 
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illustrated. The atmospheric pressure used in the simulations is shown in Figure 7.4. Note 

that the initial decreasing pressure depicted in Figure 7.4 would tend to inhibit infiltration 

while the increasing pressure beginning at roughly 3 days would promote it. The porosity 

of the approximated alluvium bulk geology was taken to be 0.2 with a permeability of 10-

11 to a vertical fracture depth of 250 m. This chosen fracture length is very long, but 

allows for an examination of the maximum direct vertical infiltration for this pressure 

scenario. An average fracture width and separation of 1 mm and 5 m were used 

respectively.  

Resulting 133Xe concentrations for infiltration at 1-7 days simulation time are 

plotted in Figure 7.5 and Figure 7.6 for illustration of the contaminant invasion scenario. 

Looking also at the pressure history in Figure 7.4, the concentrations appearing in these 

plots can be regarded as follows: 

 

Figure 7.4 Seven day atmospheric pressure history assumed for atmospheric infiltration 
simulation studies. Note that a decreasing pressure would tend to inhibit 
infiltration and an increasing pressure (beginning at roughly 3 days) would 
promote it. 
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Figure 7.5 UTEX simulated vertical fracture infiltration of 133Xe from a constant 8.87E-4 
Bq/m3 atmospheric source, 1-4 days. 
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Figure 7.6 UTEX simulated vertical fracture infiltration of 133Xe from a constant 8.87E-4 
Bq/m3 atmospheric source, 5-7 days. 
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Days 1-3 - The atmospheric pressure during this time is predominantly falling. A small 

(roughly 0.5%) upward fluctuation in pressure during the first day is responsible 

for a large part of the initial push of contaminated air down the fracture that is 

seen in  plots of the first 3 days. A small concentration begins to diffuse laterally.  

Days 4-5 -. During the fourth day, the atmospheric pressure begins to swing in the other 

direction and is steadily increasing into the fifth day. This is evident in the Day 4 

plot as the first real substantial 133Xe invasion. In the Day 5 plot, the xenon 

contaminant continues to penetrate down the fracture; the lateral diffusion away 

from the fracture into the bulk medium is more evident. Also evident, because of 

the speed of the pressure-induced flow down the fracture, the concentration is 

higher deeper in the system.  

Day 6 - The down-fracture air invasion has already reached its maximum as the 

atmospheric pressure has peaked and is fluctuating in a slightly downward trend. 

Lateral diffusion at deeper depths has widened the concentration profile 

substantially compared to Day 5. 

Day 7 - As the pressure is no longer rising sharply and experiences small fluctuations, the 

concentration down the fracture has equalized somewhat. In fact, a concentration 

bubble near the top can be seen as it rises towards the surface due to the 

downward trend of the pressure. The lateral diffusion of 133Xe away from the 

fracture has not increased substantially, especially in the upper parts of the 

concentration profile; an equilibrium between radioactive decay rate and diffusion 

is likely near. 
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Figure 7.7 133Xe concentration curves for each of days 1-7 as a function of distance from 
fracture at a depth of 9 m due to simulated infiltration. The dashed line 
represents an approximate detection limit.    

 

Figure 7.8 The averaged concentration depth profile for the seven days of the 133Xe 
infiltration simulation obtained by averaging over fracture angles between 
±85°. 
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Figure 7.7 shows the various concentration curves of 133Xe as a function of 

distance from the fracture at a vertical depth of 9 m for each of the seven days plotted in 

Figure 7.5 and Figure 7.6. Plots for additional depths are included in Appendix G for 

further illustration. Many of the same infiltration characteristics are discernible as before. 

The adjacent fracture concentration does not change significantly in days 1-3, and then 

shows a marked increase in the following days. At this shallow depth, the rise in the 

curve further from the fracture slows in time even as the fracture concentration is 

increasing, which is an indication that further transport deeper into the bulk medium is 

inhibited by radioactive decay. The flattening of the concentration curves at large 

distances from the fracture is due to direct vertical diffusion of 133Xe through the bulk 

medium. This diffusion is of course substantially smaller at greater depths, as seen in the 

additional plots in Appendix G. Noting that fractures in the ground are unlikely to be 

strictly vertical, but instead to have a random vertically-trending orientation, Figure 7.8 

shows the averaged concentration depth profile of the first 5 m for the seven days of the 

infiltration simulation obtained by averaging over fracture angles between ±85°. 

The plume concentrations adopted in Table 7.1 for this case study are a fair 

representation of a scenario likely to be of concern for infiltration. The estimated 

radioxenon concentrations of the plume are just above minimum detectable values, and it 

is in this regime where potential for an infiltration problem is likely to be difficult to 

judge. To take the preceding analysis one step further towards evaluating the degree of 

infiltration that can take place down a vertical fracture, simulations were run using a bulk 

geologic porosity ranging  = 0.1 to 0.5. At 9 m depth, the 133Xe above-MDC 

concentration distance of invasion is shown in Figure 7.9 for different values of the 

porosity.    
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7.4 ON-SITE INSPECTION MODELING 

While the entirety of the present work on subsurface noble gas source and 

transport modeling is ultimately in support of on-site inspection science, no real attention 

has been paid thus far to the actual effect that soil-gas sampling can have on the system it 

is intended to study. Of very important concern is the degree to which actively drawing 

air from the subsurface can influence the radionuclide concentrations and isotopics that 

might (or might not) actually exist there as evidence of a suspected UNE. This section 

builds on the preceding investigation of generalized atmospheric infiltration towards a 

more pointed examination of the effects of on-site inspection procedures. 

 

 

Figure 7.9 Depth of 133Xe bulk matrix penetration at concentration above MDC for 
Days 1-7 for varying values of the porosity of the medium. Like in Figure 
7.7, these values correspond to a depth of 9 m. 
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7.4.1 Borehole and pumping 

As illustrated in Figure 7.1 and outlined in Section 7.1, soil-gas sampling in an 

on-site inspection scenario entails the boring of a hole several meters into the ground, 

emplacing a sample hose into the hole, and pumping on the hole to collect subsurface air. 

Due to the high-volume requirements for 133Xe (SAUNA) and 37Ar (MARDS) analysis, a 

typical flow rate induced by soil-gas sampling is of the order 1 L/minute for a sample 

time of between 12-24 hours (Carrigan & Sun, 2012). This is achieved through a 

substantial pressure drop in the subsurface environment, which induces a localized gas 

flow towards the sampling point. Like the atmospheric pressure response effect on 

generalized underground transport, the scope of the soil-gas sampling effect on the 

environment is a function of the openness of the geology.  

As illustrated in Figure 7.10, one of the most obvious dangers of introducing a 

sizable pressure sink at shallow depths is the very real potential to induce a flow 

primarily from the surface, which could greatly undermine a soil-gas sampling effort, 

intended to collect subsurface gas. Figure 7.11 illustrates the different scales of depth at 

work in the on-site inspection scenario. The likely soil-gas sampling point (and location 

of the pressure sink) is only 2-10 m deep in the top part of the geology. The location of a 

potential UNE could be hundreds of meters deep. Even accounting for the possibility of 

an extended rubble chimney and gas halo above the initial cavity, the sampling point is 

much closer to the surface and atmosphere compared to the likely subsurface 

radionuclide source.  
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Figure 7.10 Cartoon illustration of the potential for the pressure drop at the point of soil-
gas sampling to induce direct air flow from the surface, potentially 
enhancing the problem of atmospheric infiltration. 

 

Figure 7.11 Conceptual picture (not to scale) of a likely OSI scenario searching for 
evidence of a UNE. The soil-gas sampling point is located at shallow 
depths, perhaps within the first few meters of a thin alluvium layer. The  
source can be many hundreds of meters deeper than the sampling point. If 
the alluvium layer pictured here is roughly 1/2" thick on the page, then a 
scaled fractured rock below it could be of the order 5 pages thick. 
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Figure 7.12 Example snapshot of the modeled system pressure state in UTEX simulations 
where a 100 mbar pressure sink is located at the midpoint between 1 m 
spaced vertically fractures to represent one instance of soil-gas sampling. 

To consider the effect of continuously pumping on the shallow subsurface 

environment, simulations were run using a pressure sink within the geology, ranging 

from 10 to 100 mbar in magnitude over a period of 7 days. The assumed geology 

consisted of a 0.2 porosity medium with 1 mm width fractures and spaced an average of 

1 m apart. The real difficulty with modeling this scenario in UTEX is in adapting the 

simplified double porosity vertical transport code to a generalized physical representation 

of soil-gas sampling. Consider the situation in Figure 7.12, which shows a snapshot of a 

UTEX simulation of the pressure response to both atmospheric infiltration and a pressure 

sink located at the midpoint of two fractures; note the vastly different axis scales. 

Fractures are located at x = 0 and 1 m, down which the changes in the atmospheric 

pressure propagate. For this given choice of average fracture separation, the position of 

the sampling point could not be farther from the nearest vertical fracture; the drop in 
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pressure at this point is felt locally and propagated only a short distance in the bulk 

medium due to lack of proximity to fractures.  

In reality, the sampling point's proximity to the nearest fracture is random, as are 

the exact number of nearby fractures and their orientation with respect to the vertical and 

even whether are not they are connected to the surface at all. This challenge is inherent in 

applying the microscopic modeling perspective within UTEX to a macroscopic, physical 

situation, and dealing with it represents one of the largest goals for potential future work 

on UTEX modeling. As a first step forward in that direction, simulations covering a range 

of fracture locations between points x = 0 and 1 m were conducted with the orientation of 

the fracture varied from near horizontal to vertical. These results were compiled and 

averaged over possible angle and fracture distribution to obtain a general idea of the 

potential macroscopic effect of infiltration in a pumping scenario. See Figures G.3 and 

G.4 for an illustration of the averaging of fractures applied to atmospheric infiltration 

alone.      

 In this way, the scenario depicted in Figure 7.12 can be generalized so that 

fractures are effectively smeared out over possible positions relative to the sampling point 

and having arbitrary orientation with respect to the vertical. The results of this "smearing" 

are shown in Figure 7.13 and Figure 7.14 for estimation of atmospheric infiltration alone 

and atmospheric plus soil-gas sampling-induced infiltration respectively. The additional 

infiltration effect of the roughly 100 mbar soil-gas sampling pressure sink in Figure 7.14 

is clearly outpacing the atmospheric-induced infiltration of Figure 7.13, at least locally 

within 2-3 m of the sampling point.  
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Figure 7.13 Resulting approximation of atmospheric infiltration after 7 days in the top 
5 m of the subsurface obtained by smearing fracture position and 
orientation. The fracture width was 1 mm and average separation was 1 m. 
Concentrations are normalized to 8.7E-4 Bq/m3 for generality. 

  

Figure 7.14 Resulting approximation of atmospheric infiltration and 1 L/minute soil gas 
sampling after 7 days in the top 5 m of the subsurface obtained by smearing 
fracture position and orientation. 
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Figure 7.15 shows similar results obtained by Carrigan & Sun (2012) for 

modeling of atmospheric gases drawn downward to the sample point and soil gases 

drawn upward from the fractured rock. The magnitude of the sampling-induced 

infiltration effect estimated in Figure 7.14 by the smearing of the surrounding fracture 

network is in good agreement with the results of Carrigan. Still, use of the "smearing" 

approximation used in the present work should be regarded as a rough order of magnitude 

approximation to a true physical scenario. For illustration of the relevant processes the 

method provides worthy insight while potential future work should focus on refining a 

better, more accurate, technique. 

 

 

 

Figure 7.15 Concentration profiles for atmospheric gases drawn downward the sample 
point and soil gases drawn upward from the fractured rock; from Carrigan & 
Sun (2012). 
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7.4.2 Atmospheric infiltration and tarping 

Atmospheric gas infiltration, due both to natural barometric pumping as well as 

soil-gas sampling is clearly a realistic concern and has been modeled as such. A widely 

proposed strategy in the community for combating atmospheric infiltration is to employ 

the use of a plastic tarp or tent to cover the on-site inspection sampling area, thereby 

locally isolating the subsurface environment from the atmosphere above it. Intuitively, 

such an approach should work; the question then turns to the amount of surface area 

coverage necessary to ensure infiltration is minimized below some control measure.   

To study the effects of such a tarp and its ability to inhibit infiltration, UTEX 

simulations were run similar to those described in Section 7.4.1 but with the addition of a 

closed surface boundary at the top of the system, corresponding to the area of coverage of 

a tarp. It should be mentioned that the ability of such a tarp or tent to actually isolate the 

subsurface from changes in barometric pressure is somewhat of an unknown. In theory, a 

rigid enclosure should effectively eliminate the direct barometric pressure fluctuations 

felt in the below subsurface environment, and this is assumed in the simulation results 

that follow, but the accuracy of this is uncertain. 

Figure 7.16 shows the estimated atmospheric invasion driven only by barometric 

pumping for 7 days of simulation time with a 5 m radius tarp covering the surface 

directly above the sampling point. The effect of the tarp is clear from a comparison with 

the analogous no-tarp scenario in Figure 7.13. Atmospheric gas invasion is highest at the 

edges of the tarp. At deeper depths, lateral diffusion and surface-connected fractures 

oriented so that their tops are outside the tarped area contribute to the averaged estimate 

of the invasion towards the sample point. Unsurprisingly, the concentration of invading 

atmospheric gas is lowest at points directly above the sample point, which are farthest 

from the uncovered surface.    
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Figure 7.16 Estimated atmospheric invasion due to simulation of 7 days of barometric 
pumping and no soil-sampling, with 5 m radius tarp coverage at the surface. 

 

Figure 7.17 Estimated atmospheric invasion due to simulation 7 days of barometric 
pumping and soil-sampling, with 5 m radius tarp coverage at the surface. 
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Figure 7.17 is analogous to Figure 7.14 with the addition of the 5 m radius tarp 

inhibiting gas exchange at the surface. Again, the main features exhibited in the plot 

make intuitive sense - atmospheric pumping infiltration at the edges of the tarp is evident 

and a comparison with Figure 7.16 shows the net effect of the pressure sink at the 

sampling point is to further induce flow in this direction. A comparison with the no-tarp 

invasion scenario in Figure 7.14 makes it clear that the estimated concentration reaching 

the sampling point is substantially reduced by the addition of the tarp. It should be 

emphasized at this point that the contaminant transport being simulated here is subject to 

radioactive decay, and that for a given system pressure response there should exist an 

equilibrium, of sorts between invasion of gas and its loss through decay. 

A somewhat interesting result evident in these simulations that might not be 

obvious is the effect that the tarped surface can have on slightly promoting pressure 

gradients in the subsurface. This can be seen in Figure 7.16 where invasion underneath 

the tarp is higher than would be expected from diffusive mixing of gas alone. Part of this 

infiltration is a result of a negative pressure gradient that arises in the system by Day 7 of 

the simulation. Due to the aforementioned assumptions about the tarp inhibiting pressure 

fluctuations beneath it, the increasing pressure found in Figure 7.4 leading up to Day 7 

induces a rise in the system pressure that would be restrained underneath the tarped area. 

The net effect in this case is that the pressure directly underneath the tarp is lower than 

the surrounding area. 

7.4.3 Radius of influence 

That employing a plastic tarp covering above a sampling area simulates a 

reduction in the potential invasion of atmospheric gas in the sampling region is not 

surprising. Ideally, anything that could be done in field operations to improve confidence 
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in soil-gas sampling would be done. The reality, however, is that on-site inspection teams 

are limited by both time and resources in the field. Supplies and equipment must be 

capable of timely transport to potential remote locations with unknown terrain. Upon 

deployment, an on-site inspection team must work quickly and efficiently to emplace a 

number of soil-gas sampling stations per day. As a result, any significant alteration to the 

on-site inspection concept of operations should be evaluated for its feasibility, as well as 

it should be optimized for generalized implementation. So, if tarping above a sampling 

area is to be integrated into the OSI standard operations, attention must be paid to 

evaluation of an optimal area of coverage. 

Like many aspects of general subsurface gas transport, a large number of factors 

are certain to contribute to the capacity for a given soil-gas sampling scenario to induce 

atmospheric infiltration in the vicinity of the collection point. Simulation results 

presented in this chapter correspond to just one potential instance of infiltration, and even 

then, the true nature of the fractured network has been smeared out, essentially neglecting 

an additional degree of freedom. Still a study was made to evaluate the effects of various 

geologic parameters on the magnitude of infiltration at a hypothetical subsurface 

sampling point and is presented here. A recommendation for potential continuing work is 

also made. 

UTEX Estimate 

Quantification of the effectiveness of tarping in reducing atmospheric infiltration 

is not straightforward. A more or less obvious approach is adopted here; a radius of 

influence (ROI) is taken here to correspond to the tarp or tent radius above the sampling 

point necessary to approximately limit infiltration to less than 1% of atmospheric 

concentration. Major factors that affect this ROI include, but may not be limited to: 

 the flow-rate or assumed induced pressure sink of the sampler 
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 the depth of the sampling point 

 porosity and permeability of the bulk medium 

 average fracture separation and orientation 

 radioactive decay rate of the isotope in question 

Additional factors that surely influence this definition of an ROI but really cannot be 

quantified in a general sense are the nature of the atmospheric pressure variations as well 

as the potential for existence of large cracks and fractures that would lead to large scale 

atmospheric invasion based on a specific path and orientation. 

 Determination of a handful of estimated ROIs with UTEX was conducted 

essentially on a trial and error basis; these results are summarized in the plots Figure 7.18 

and Figure 7.19. This study was extremely time consuming and computationally 

expensive, and as such, the span of parameters considered is limited to just large enough 

to only illustrate some of the initial characteristics of the parameter sensitivity for 

atmospheric infiltration. In Figure 7.18, simulations covered four values of the porosity 

of the bulk medium to find that the ROI increases somewhat slowly with increasing 

porosity. At very low values of the porosity, it would be expected that the tarping 

necessary to inhibit infiltration would decrease sharply as the porous system space is 

reduced and flow restricted, and this seems to be the trend in the results.  
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Figure 7.18 Estimated tarp radius needed to reduce atmospheric infiltration to <1% (ROI) 
as a function of the porosity of the bulk medium in which the sample point 
is located. Depth and average fracture separation were 4 m and 1 m 
respectively. 

  

Figure 7.19 Estimated tarp radius needed to reduce atmospheric infiltration to <1% (ROI) 
as a function of the depth in which the sample point is located for different 
values of the average fracture spacing. Porosity of the bulk medium was 0.2. 
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 In Figure 7.19, ROIs were estimated as a function of depth for different values of 

the average fracture separation. Fracture separation is inversely proportional to frequency 

of fractures - a larger average separation implies a less fractured system, which in turn 

inhibits the overall rate of transport throughout the system. Thus the correlation of ROI 

with average fracture separation in the results of Figure 7.19 is not surprising; larger 

separation necessitates a smaller surface coverage to inhibit infiltration. The dependence 

of the ROI on depth is also generally shown to follow intuitive expectations - the deeper 

the sampling point the less likely infiltrating atmospheric gas is to reach the sampling 

point. At 8 m sampling depth with an average fracture separation of 5 m, simulations 

estimated that in this scenario atmospheric gas would not reach the sampling point at 

appreciable concentration even without tarp coverage.    

 

7.5 INFILTRATION INFLUENCE ON ISOTOPICS 

The bulk of the effort in quantifying atmospheric infiltration was focused on the 

single isotope 133Xe. While 133Xe is typically regarded as the most relevant radioxenon 

isotope of potential for downwind plume contamination, the details of possible various 

plume isotopic ratios of radioxenon should also be considered. In the example case 

utilized in this work, four xenon isotopes were assumed to be present in the plume (Table 

7.1). To consider the possible isotopic effects of transport from barometric pumping and 

sampling-induced infiltration, additional simulations were run with all four isotopes 

present in the system. 
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The resulting ratios of radioxenon gas estimated at different locations in the 

system at various times in the simulation for a small range of values of the porosity and 

fracture separation are shown in Figure 7.20. The red boxes in the figure represent decay-

only evolution of the atmospheric concentration of xenon (the darker red box is the 

estimate soil-gas background point). By and large, ratios observed in the simulations fell 

very close to these lines; the majority of deviations from this decay line came at points 

near the edge of simulated tarp where gas mixing due to quick changes in barometric 

pressure can have a greater impact. Still, these fluctuations are relatively minor, and 

overall, the isotopic fluctuations in the near surface due only to transport effects and the 

sampling-induced pressure sink seem quite small. 

Figure 7.20 Radioxenon isotopic ratios simulated at various points in underground due to 
infiltration of atmospheric gas emanating from ORNL HFIR. The isotopic 
signatures deviate little from the decay-only path, suggesting the transport 
effects on the isotopics are small. 
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This result is, however, only half the story. A major assumption in the preceding 

simulations was that the atmospheric source of radioxenon was constant in time. 

Estimated isotopic fluctuations resulting from deeper underground transport of a UNE 

source were largely the result of mixing of radioxenon source in time. Due to the constant 

source ratios in time as well as the close proximity of the atmospheric source to the 

sampling region considered in the infiltration case, this mixing would be much smaller 

than in the case of an UNE source. 

 

7.6 CONCLUSIONS AND RECOMMENDATIONS 

While the predominant focus of this entire work is always concerned with 

applications to OSI science, the goal of this chapter specifically was to employ the UTEX 

model in making a cursory examination of the OSI scenario itself, near the sampling 

point. To this end, the capacity of pressure fluctuations to "imprint" an atmospheric 

concentration of radioxenon into the sampling region was considered and found to be a 

realistic possibility. Additionally, the added effect of sampling in the shallow ground was 

confirmed to enhance the potential infiltration problem. Due to these combined effects, it 

is not unreasonable to expect that, if left unchecked, invasion of an atmospheric 

concentration of gas of >10% is possible at depths of up to 5 m or more. 

Simulation of infiltration scenarios with the addition of a tarp above the sampling 

point show that such a practice can indeed be effective at inhibiting direct atmospheric 

invasion at the sampling point. A radius of influence (ROI) has been used to estimate the 

area of tarp that would be necessary to limit infiltration to <1% at the sampling point and 

a short, initial study has been made to estimate this ROI and its dependence on major 

properties of the geology and depth of sampling. With regard to limitations of this tarp 
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effectiveness approach, one major point to keep in mind in evaluating infiltration 

pathways and estimating ROIs is that the modeled 133Xe contaminant is undergoing 

radioactive decay so that pseudo-equilibrium states arise in the distribution of the gas in 

the subsurface. ROIs for shorter or longer lived isotopes would therefore be smaller or 

larger, respectively. Additionally, while the assumed soil-sampling rate can be modeled 

as constant, the effects of barometric pumping are much more difficult to quantify in a 

general sense. Simulation results and estimates of ROI dependence on various parameters 

presented here should be regarded as an approximation of the true physical system in one 

specific definition of the pressure history. In general, ROIs would be a function of 

atmospheric pressure as well.  

The ROI characterization utilized in this work may not be the best way to quantify 

the effectiveness of tarping for infiltration reduction. The largest limitation of this 

approach with UTEX simulations is the inability to incorporate random occurrences that 

can greatly affect the infiltration scenario, such as barometric fluctuations (discussed 

above) and specific fracture orientations that together could create "worst case" scenarios 

for infiltration. Given that knowledge of the underlying fracture system cannot be 

counted on in an on-site inspection, an evaluation of infiltration possible with and without 

various size tarping should be made probabilistically. An extension of the UTEX model 

for potential future work includes incorporating a method of stochastically determining a 

fracture network within specified average parameters and simulating the resulting 

transport scenario. In this way, problems such as atmospheric infiltration could be 

regarded for distinct random scenarios, and probabilities could be associated with the 

occurrence of certain events such as >1% concentration reaching the sampling point in an 

OSI.     
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Chapter 8. Conclusion 

The broad objective put forward for this work was to develop and benchmark a 

complete model for the vertical transport of noble gas from an underground nuclear 

source to the surface, and then ultimately to apply this model to relevant radionuclide 

detection scenarios. The predominant focus of such simulations has been concerned with 

relative transport rates and isotopic ratios. In building the resulting UTEX model from the 

ground up, establishing a simple fission source term for use at arbitrary times following a 

hypothetical UNE, verifying and vetting the model, and then examining a number of 

subsurface gas transport applications, the scope of this work was somewhat ambitious.  

8.1 GOALS REVISITED 

Quickly revisiting the goal list from the end of Chapter 1, the following summary 

can be made about work accomplished and demonstrated in this dissertation: 

1. Model initial source term – (Chapter 2) Montebruns, in conjunction with MCNP 

and Origen 2.2, was utilized to create a simple, fast fission model of IAEA 

significant quantities of HEU and Pu to approximate the source term of a 

normalized 1 kton, hypothetical underground nuclear explosion. This model 

included a geologic wrapper around the fissile material to estimate the neutron 

activation of the surrounding rock environment of a UNE. From this, a simple 

estimate of the initial radioxenon and 37Ar produced in a generic UNE was 

established and an estimate of xenon ingrowth from iodine as a function of time 

four use as an input to the source function of the transport model was facilitated.  

2. UTEX transport code development – (Chapter 2 and 3) The Underground 

Transport of Environmental Xenon (UTEX) model was developed as a Matlab 

tool for the simulation of simultaneous movement, decay and buildup of various 



 229

noble gas isotopes as they might originate from an underground, time-dependent 

source (similar to a UNE). The model includes general diffusive and advective 

transport, and is driven by a user-specified atmospheric history, but neglects the 

effects of adsorption and thermal convective flow. 

3. UTEX transport code benchmarking – (Chapter 3) UTEX is a highly modularized, 

flexible code that facilitates application to generalized sources, geological 

scenarios, and pressure influences. Much work was done to benchmark the code 

against analytical solutions for simple case studies to test the veracity of the 

transport physics being modeled. The code’s temporal and spatial meshes were 

optimized and various numerical solution techniques were explored.  

4. General geologic parameter sensitivity – (Chapter 4) UTEX was utilized to 

consider the ability of geologic transport to affect isotopic ratios in a subsurface 

nuclear explosion scenario. A large scale sensitivity study was undertaken to look 

at how varying the major geologic input parameters can result in alterations in the 

radioxenon signature of outflowing gas. While much of the simulated data was 

found to fall within the traditionally-assumed non-fractioned and fully-fractioned 

decay bounds, there were in fact many instances in which radioxenon releases 

were simulated outside this domain. It is clear from this study that the vertical 

transport of radioxenon gas from an underground nuclear explosion can 

significantly affect the isotopic ratios used within the context of the CTBT to 

determine whether a test has taken place (J. Lowrey et al., 2013). 

5. Source term consideration – (Chapter 4) Following the geologic parameter 

sensitivity study, an evaluation of how fluctuations in radioxenon signatures can 

arise due to transport was examined. In particular, it was found that ingrowth of 

radioxenon from iodine potentially marks an additional important bounding case 
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when considering xenon ratios from a potential UNE. The effects of transport 

were largely simulated to smear out the un-transported decay signature, 

potentially adding uncertainty when trying to distinguish a generic UNE source 

from a peaceful nuclear source. 

6. Sampling assumptions – (Chapter 4 and 8) A look was made at evaluating the 

assumptions behind how the UTEX model estimates radionuclide “release” from 

or “sampling” within the simulated system. In particular, the effects of assuming a 

frozen sample (unphysical assumption) quantity versus a dynamic and decaying 

sample even as it is being collected (real effect) were considered and found not to 

greatly alter the resulting estimates. When considering the variation of radioxenon 

signatures as a function of sampling depth and position between fractures, the 

effect was minor.  

7. Cavity and geology characterization – (Chapter 5) Effort was made to consider 

the effects of various layers of different rock geologies on the simulated UTEX 

transport. These effects were found to be somewhat subtle and not always 

intuitive. How various porosities and permeabilities influence noble gas transport 

by barometric pumping was characterized. Additionally, a simplified UNE cavity 

environment was considered and the effects of overpressurization of the cavity 

explored. 

8. Soil-gas background estimates – (Chapter 6) Soil-gas background levels of 

radioxenon and 37Ar were estimated and their sources characterized. Order of 

magnitude-wise, the resulting calculations are on par with similar results for 

radioxenon and 37Ar published by Hebel (2010) and Riedmann and Purtschert 

(2011) respectively. The apparent effects of geologic transport in UTEX were 

found to be minor in changing the radioactive decay equilibrium concentrations 
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except in the very shallow depths, which is consistent with other literature on the 

subject as well. 

9. OSI considerations – (Chapter 7) An effort was made to model the actual act of 

soil-gas sampling in an OSI scenario. It was found that atmospheric infiltration 

could indeed be a significant problem and that tarping above a sampling site is 

one means of potentially countering it. The effectiveness of tarping for various 

shallow geological characteristics was considered in the context of a radius of 

influence, quantifying the size of the tarp necessary to reduce infiltration at the 

sampling point below a specified level.  

 

8.2 MAJOR FINDINGS 

Transport effects on radioxenon ambiguation 

It is clear from the UTEX simulations of the sensitivity studies presented here that 

geological transport of xenon gas can significantly affect the isotopic ratios that are used 

to determine whether or not a clandestine nuclear test has taken place. This result is 

believed to be significant in that it has been previously proposed to use ratios of 

radioxenon isotopes to discriminate between nuclear explosion and peaceful nuclear 

activity sources (Kalinowski et al., 2010). As demonstrated here, the evaluation of 

detected radioxenon by quickly filtering data based on a discrimination line to distinguish 

peaceful versus weapon nuclear sources can in many cases oversimplify the processes 

that bring such radionuclides from source to detector. This result is not altogether 

surprising given that transport processes have long been known to affect the rate at which 

subsurface gas migrates to the surface. Inclusion of radioactive decay and time-dependent 
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source modeling leads to a potential variability of radioxenon signatures due to mixing of 

sources from different times. 

This work has demonstrated that a third decay bound should be considered when 

evaluating a potential explosion signature – it has been shown that it might be possible in 

the course of rapid atmospheric pressure fluctuations to temporarily evacuate local (near-

fracture) regions of the subsurface of built-up radioxenon gas, whereupon xenon 

immediately produced from iodine decay can result in a separate, unique signature. As 

xenon from surrounding, un-evacuated regions subsequently diffuses in and mixes the 

signature begins to swing back towards the traditional non-fractioned decay bound. The 

net effect of this process is the smearing and further ambiguation of a generic radioxenon 

source signature, making it potentially harder to differentiate from nuclear reactor sources 

based solely on a single discrimination line.     

 

Geologic and cavity sensitivities 

Within the dual porosity framework of the UTEX model, the capability to 

simulate conceptually realistic heterogeneous geologic scenarios was demonstrated. It 

was found that the introduction of highly impermeable and low porosity zones in the 

modeled system results in an attenuation of the bulk air flow in those regions, which 

depending on the situation, can either enhance or inhibit vertical gas migration from a 

deep UNE source. Generally speaking, movement of radioactive gas from a deep 

underground source operates on two substantially different timescales. In the short term, 

higher porosity and more permeable mediums allow for a more rapid and efficient 

movement of noble gas in response to barometric fluctuations at the surface (as well as 

cavity overpressures and thermal convective processes). However, with regard to gas 

invading the upper levels of the bulk matrix medium, this more open geology is less 
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effective at trapping gas in those higher regions. The result of this difference is that on 

longer time scales, effects of barometric pumping are subdued in the more open 

geologies, as the UNE gas front is not as effectively built up towards the surface. 

It has been demonstrated that potential UNE gas seepage is apparently 

significantly more susceptible to variability in the geology closer to the source than 

farther away. This is not entirely unintuitive, as gas being considered for transport in this 

context is radioactive so that its eventual transport to the surface is an inherent race 

against time. The faster the UNE noble gas can escape the lower regions of the geological 

system, the much higher probability that it can leak from the system on subsequent 

swings in the atmospheric pressure. This is likely especially true of the geologic 

conditions in the immediate vicinity of UNE cavity. How the cavity fills in and how the 

surrounding environment fractures and gets compacted following the initial event will 

have a large influence on how quickly noble gas can move upwards in the system. This is 

in addition to the sensitivity of outflows to the actual distribution of radioxenon, iodine, 

and radioargon gas in the early halo zone. These effects of the variability in the geology 

were found to be somewhat less pronounced in the long term process of barometric 

pumping than in the early time venting.  

A cursory examination of the effects of a highly overpressurized post-UNE cavity 

state was also made. UTEX simulations of these cases indicated that the 

overpressurization does indeed lead to a substantial increase in the movement of UNE 

gas to the to the shallow depths in the short term time frame, but within a week’s 

simulation time these induced outflows largely subsided. At later times, however, it was 

found that an initially overpressurized cavity might result in a lag in concentration 

buildup in the higher regions with the cumulative effects of barometric pumping. This is 

likely due to the earlier outflow of gas from the lower regions, which results in slightly 
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smaller inventory later. These effects, however, only appeared temporarily in the 

simulations and largely speaking the effects of overpressurizing the UNE cavity were 

minimal on the long term migration of radioxenon due to barometric pumping. 

Lastly, regarding the isotopics of the resulting radioxenon outflows, the 

overpressurized cavity case was found to exhibit a substantial fluctuation at the very early 

times, corresponding to a removal of gas directly from the cavity environment that was 

void of iodine ingrowth. This fluctuation was short-lived, and beyond the first couple of 

days the xenon isotopics did not seem to be affected by the initial pressure in the cavity. 

Broadly speaking, it was found that regions within the geology that inhibit rapid 

movement of gas in response to atmospheric pressure fluctuations are also more likely to 

induce isotopic fluctuations through the trapping of upward-moving noble gas. By 

homogenizing the geology and essentially opening the system up to greater freedom of 

movement, the radioxenon ratios are less disturbed by movement through the geology.  

 

On-site inspection concerns 

A study was made to simulate the barometric effects of performing soil-gas 

sampling in the shallow subsurface as would occur as part of an OSI procedure. The 

capacity of surface pressure fluctuations (even without soil-gas sampling) to "imprint" an 

atmospheric concentration of radioxenon into the potential sampling region was 

considered and found to be a realistic possibility. The added effect of sampling in the 

shallow ground was confirmed to enhance the potential infiltration problem. Due to these 

combined effects, it is not unreasonable to expect that, if left unchecked, invasion of an 

atmospheric concentration of gas of >10% is possible at depths of up to 5 m or more. 

Simulation of infiltration scenarios with the addition of a tarp above the sampling 

point show that such a practice can indeed be effective at inhibiting direct atmospheric 
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invasion at the sampling point. A radius of influence (ROI) was defined to estimate the 

area of tarp that would be necessary to limit infiltration to <1% (somewhat arbitrarily 

chosen) at the sampling point. A quick study was made to estimate this ROI and its 

dependence on major properties of the geology and depth of sampling. Similar to 

estimates by Carrigan et al., (2012), it was found that utilization of a tarp of radius 

between 2-6 m would be required to prevent significant infiltration given a variety of 

different conditions.  

 

8.3 APPLICABILITY OF UTEX MODELING 

8.3.1 What UTEX does 

The UTEX model as was set out in the early stages of this research is designed to: 

 Simulate subsurface transport of environmentally unreactive gases 

 Handle generalized time-dependent source terms of variable spatial distribution 

 Simulate bulk advective flow driven by a fully user-specifiable pressure response 

 Handle a system geometric model definable in terms of the handful of a handful 

of physical parameters as described in Chapters 2 and 3 

 Account for radioactive decaying isotopes as well as generalized decay chains 

that include metastables 

 Output simulated isotopic concentrations at every spatial mesh point for each time 

step in the simulation 

8.3.2 Limitations and Assumptions of UTEX 

Though a number of the underlying assumptions built into the UTEX model have 

been mentioned already or at least implied, it is important to state them explicitly to 

clearly define for what applications UTEX can be utilized – these are listed in Table 8.1. 
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The first five of these assumptions are basic to the double-porosity theory as a whole as 

laid out in Chapter 2 (Tang, et al., 1981). Of these five, only the last one really restricts 

the transport modeling capabilities of UTEX. The last four assumptions listed in Table 

8.1 are specific to the UTEX design and are not really restrictions to the model concept, 

but rather just represent current limitations that could be improved upon in the future. 

  

 

 

    

Table 8.1 List of assumptions built into the UTEX model 

D
ou

b
le

-P
or

os
it

y 
A

ss
um

p
ti

on
s 1. Fracture width is assumed to be much less than the length of the fracture, 

Lf  . 

2. Complete mixing across fracture width is assumed. 

3. The matrix permeability largely inhibits bulk air flow , 1mk . 

4. Vertical transport along fractures is assumed to be much faster than in the bulk 

matrix. 

5. Isothermal transport is assumed; heat transfer could also apply, but this was 

beyond the scope of this work. 

M
od

el
in

g 
A

ss
u

m
p

ti
on

s 

6. The modeled system is assumed to have a closed bottom boundary at some 

depth L corresponding to a water table or otherwise impenetrable medium. 

7. Adsorption effects are not considered in the model; geologic water saturation is 

assumed to be small and its potential effects are assumed to be incorporated 

into specification of porosity and permeability values. 

8. The model assumes the transport only of non-reactive gases; in the case of 

xenon, parent nuclides are assumed to remain stationary where initially 

emplaced. 
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8.4 RECOMMENDATIONS AND OUTLOOK FOR FUTURE WORK 

In many respects, much of the work conducted in the course of this Ph.D. has 

been aimed at establishing a capability to model different aspects of noble gas transport 

and demonstrating the capacity through simple applications. These case studies have 

yielded insightful results, many of which are summarized in the preceding section on 

major findings. With that said prospects for future work fall roughly into three categories. 

First, there exist a number of possibilities for extending the UTEX model in terms of the 

model itself, its capabilities and its distributability. Second, the UTEX code could be used 

to conduct many of the studies presented here in more specific depth, as well as to 

undertake additional studies of topics not really considered in this work. Lastly, there is 

always a need for experimental verification of the physics being modeled numerically. 

8.4.1 UTEX design extension 

Code design 

This first direction covers a very broad body of prospective work on the UTEX 

model that concerns addressing some of the limitations of the current model and 

expanding on its capabilities. However, before other significant modifications and 

extensions to the UTEX model are made, the current code should be further evaluated for 

efficiency and large scale deployment on parallel computing clusters, as it already pushes 

the limitations of desktop computing resources. These current limitations are: 

 UTEX is written in MATLAB 

 RAM requirements are determined by the size of the 2D system being modeled as 

well as the number of isotopes being tracked 

 Single CPU core speed is the largest limiter of execution speed 

 Current code largely does not utilize parallel computing capabilities 
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The greatest limitation of using MATLAB for the continued growth of UTEX is in its 

distributability; the software is not open source and quite expensive. UTEX future 

development will likely see an increase in the need for distributed computing power, 

which is something that may just not be feasible if a separate MATLAB license is 

required per node on a large computing cluster. 

 Options for tackling this potential shortfall in future work: 

1. Stick with MATLAB environment – If the code is to remain in MATLAB, work 

should be done to optimize UTEX for multi-threaded processing on a single 

machine. This will require a great deal of additional modularization of the code as 

well as parallelizing the major numerical routines for utilization of the MATLAB 

parallel computing toolbox. This is probably the most straightforward option 

considered here. Revamping the code for increased modularity, multithreading 

and memory efficiency is probably significantly less time consuming and cheaper 

than building the code in a new environment. Another advantage of keeping the 

code in MATLAB is that any machine running the software can run the model. 

This is in addition to the user-friendly GUI and data analysis tools that come with 

it. 

2. Utilize the Matlab code framework for use with Octave – Octave is another high-

level programming language that was developed for use in numerical computing 

with Matlab compatibility in mind. For all intents and purposes, it can be regarded 

is an open-source "clone" of Matlab that, while somewhat different, could be used 

for large scale distributed computing without the licensing hassle. In this case, 

many of the pros of staying in a Matlab environment still apply; additionally, the 

capacity to deploy the model on a large scale for batch simulations can be 

achieved through the open-source alternative, Octave. Still, Octave differs from 
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Matlab in a few ways, which would likely require separate optimization of UTEX 

for use in Matlab as well as Octave. While minor inconvenience, there will exist a 

duplicity of certain development efforts going forward. Also, Octave is not as 

optimized for multithreading capability as Matlab, so it will likely remain slower 

per simulation than Matlab. 

3. Port the UTEX code into a Fortran, C or similar language – Such a rewrite would 

facilitate a much broader, platform-independent distributability of the UTEX 

code. Pre-built numerical routines and libraries with years of development and 

optimization behind them could be incorporated to enhance execution speed. 

Large scale distribution would be straightforward. However, a complete 

rebuilding of the current UTEX model in one of these computer languages would 

be a very large undertaking, and additionally require subsequent re-vetting, re-

verification, and re-optimization just to get the functionality of the new code to 

the point that it is at currently in Matlab. Also, whereas porting the software over 

to Fortran or C could increase speed and efficiency, this would be the expense of 

some amount of code transparency and user friendliness. 

3D Modeling capability 

UTEX currently simulates a 2D geological system using a rectangular mesh in an 

underlying double porosity framework. Transport of gas in the modeled system is broken 

into two degrees of freedom: vertical movement occurs only in fractures; horizontal 

movement takes place between the vertically running fractures; the two degrees of 

freedom are coupled at a fracture-matrix interface. While this simplified 2D system 

provides a good first approximation to true underground gas transport in a real geology, it 

remains a first approximation and limits the modeling capabilities to some extent 
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Incorporating an extended 3D geometry would facilitate modeling of even more 

realistic geologic systems in which previous underground detonations have been 

conducted and for which there potentially exists experimental data for radionuclide 

leakage. The current 2D geology modeled in UTEX should be regarded as an idealized, 

average representation of a larger system that is useful for establishing extremes in the 

mechanics of gas transport. A 3D model would allow for a better estimation of actual 

nuclide release concentrations, a more accurate representation of transport taking place in 

large pre-existing cracks that are not necessarily straight and vertical, and the ability to 

model specific event scenarios to produce data for comparison to actual field data. 

Simply restructuring the UTEX code to include an additional dimension on top of the 2D, 

simple double porosity system already modeled is neither very difficult to implement nor 

does it provide a whole lot more useful modeling capability. More useful would be 

enhancement of UTEX to a fully 3D model in which a geology is composed of non-

regularly spaced and sized cracks within a heterogeneous geology and gas transports in 

all three degrees of freedom. 

8.4.2 Case studies 

Transport mechanisms 

UTEX currently considers the transport of subsurface gas that is affected by the 

following mechanisms: diffusion, advection, and radioactive decay. Additional reaction 

mechanisms exist that can affect the rate of transport of subsurface gas, most notably 

adsorption, desorption and the effects of large thermal gradients (see below). Also, the 

current model altogether neglects the effect of soil moisture content. Even in dry, arid 

areas, moisture exists in the ground several meters below the surface and deeper. 

Additional considerations for natural ground water flow should be made, for the effect on 
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subsurface gas transport could be substantial. Adding modeling capability for all of these 

mechanisms would be well within the scope of future UTEX work. 

Early post-UNE time studies 

Largely due to the nature of the very simple system being modeled, UTEX 

currently is somewhat unsuited for modeling subsurface gas transport as would result 

from conditions just following a UNE. Effort was made in Chapter 5 to simulate some of 

the effects of the cavity and fractured bedrock on transport, as well as the influence of an 

overpressurized cavity. From these results as well as similar work done by Carrigan et al. 

(2012), it is clear that effects of high pressure and thermal gradients near a cavity are 

potentially important to gas transport in the first few hours to days following a UNE. 

Additional effects of a cavity collapse, highly fractured chimney, rapid vertical transport 

or venting through large fractures and potential mechanical containment measures could 

be examined in greater sensitivity studies than that presented in Chapter 5. Effects of 

thermal gradients, especially at early times due to the explosive heating of the detonation 

cavity as well as daily surface heating, would make interesting additions to the UTEX 

model, but this would add another driving force to the system in addition to the 

barometric pumping, and is thus beyond the present scope. 

These suggestions would also be served better if UTEX is extended to include 3D 

environment modeling capabilities. Such early post-detonation effects have been shown 

in this work to be less likely to have immediate effects on radionuclide ratios, but can 

have a large effect on the distribution of radionuclides from which isotope fractionation 

may alter occur due to slower transport mechanisms. This would also lend the UTEX 

model useful to simulating noble gas releases within the first few days that have the 

greatest chances of being detected at IMS stations rather than just long-delayed releases 

relevant to OSI scenarios.  
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Larger sensitivity studies 

Under the assumption that the above improvements have been implemented, a 

much desired task for future work would be to use UTEX to do even further work in 

estimating gas transport sensitivity on the large number of variables that go into modeling 

subsurface movement and release of gas. The ultimate goal would be that for a given 

geologic location (or even variety of potential locations) to establish a range of possible 

gas releases and ratios in the 3D model subject to varying weather, ground moisture, 

radionuclide source, and cavity conditions. Given a hypothetical event whose magnitude 

is constrained by seismic measurements in an area where the geology is “generally” 

known, the 3D UTEX model could be used to establish order of magnitude release 

bounds subject to the other variables within the model. A greater understanding of how 

various event parameters and environmental parameters affect gas transport and release 

can only improve understanding of how best to detect radionuclides released. 

Additional OSI Science 

On-site inspection scenarios still provide the most direct application of the results 

of the UTEX code. The current UTEX capability and potential future development would 

allow for greater examination of the CTBT concept of operations for OSI. There is 

potentially more work to be done in the assessment of atmospheric infiltration dangers in 

soil-sampling as well as characterizing both tarping as well as alternative solutions to the 

problem. Again, the capability of UTEX to be useful in modeling such scenarios has been 

established and demonstrated, but a large amount of work exists in covering sensitivities 

of such effects on environmental and OSI procedural parameters. Other tasks could be 

related to studying the material chosen for borehole backfilling, the process of de-wetting 

that occurs in materials like bentonite clay, optimizing the soil-gas sampling technique, 
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and examining the greater infiltration and sampling sensitivity to variations in the 

atmospheric pressure. 

 

8.5 EXPERIMENTAL VERIFICATION 

One reality of simulating subsurface gas transport and making estimates of 

leakage rates and isotopic characteristics is that such predictions are inherently difficult to 

verify experimentally. First of all (and fortunately), there are not many known incidents 

of underground nuclear explosions on which to test the major thesis of this work – that 

subsurface transport can potentially alter the isotopic signatures of UNE noble gases. 

Second, so many factors combine to create a real, physical system model and transport 

scenario that replicating such in a numerical model is an extremely tall task and small 

inaccuracies in the approximation can affect a large deviation in the compared estimates. 

As a result, transport modeling is a tool best used for order of magnitude type estimates 

with the larger aim of identifying important aspects of the physics and setting bounding 

cases on the potential results. 

8.5.1 Possible Experiment Concept 

The largest influence on fluctuations in the simulated radioxenon isotopic ratios 

presented in this work comes from the variable movement of a radioactive gas that is 

produced by a time-dependent source. The greatest potential for verifying such isotopic 

mixing effects experimentally would be in replicating as many of these characteristics as 

possible in a controlled environment. The most important points in the consideration of 

setting up such an experiment, even on a small scale, are: 



 244

 A mixed, radioactive gas source whose half-lives are different enough that their 

ratio of concentration should change “significantly” over the time frame of 

pressure fluctuation driving the system transport. 

 A continuous geologic medium, preferably a rock or semi-impermeable soil 

medium in which fracture-matrix diffusion could be exhibited. Large gaps at 

potential rock-container interfaces would have to be minimized; otherwise they 

will become the dominant paths of transport rather than through the medium 

itself. 

 A variable pressure source whereby the effects of fluctuating atmospheric 

pressure can be simulated. It is important that variable flow in both positive and 

negative direction can be induced in the system. 

 And obviously a method for gas sampling and detection would be necessary to 

measure and quantify the transport effects. 

 

Figure 8.1 shows a conceptual illustration of a possible approach to simulating 

small scale movement of radioactive gas through a geologic medium. The general idea of 

this concept is to emplace a large, bulk slab of geologic medium within a closed, 

controlled test system, through which transport of a tracer gas can be induced through 

manipulation of the pressure at the top of the system. If the medium does not contain a 

pre-existing fracture network, then it is conceivable that a system similar to that modeled 

by UTEX could be achieved artificially through the use of a very narrow tubing or 

similar mold around which a medium such as concrete could be poured and allowed to 

solidify. Either the tubing/mold could be withdrawn, baked out, or perforated tubing 

could be employed that is highly permeable and allows gas exchange with the 

surrounding rock medium. 
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Figure 8.1 Conceptual illustration (not to scale) of a possible experiment to examine the 
effects of geologic transport on a time-dependent source signature.  
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At the bottom of this system, connected externally, would be a source, preferably 

of a radioactive gas such as iodine. This source gas would be released into the closed 

system and variable positive and negative applied pressures at the top of the system 

would induce advective vertical flow up the artificial fracture. Through successive 

upward and downward movements along the fracture, gas seepage into the surrounding 

bulk rock medium would occur, hopefully mirroring the barometric pumping effect. 

Sampling at the top of the system would then allow for the transported gas to be analyzed 

for alterations in isotopic signature. 

Figure 8.2 depicts a schematic of the design concept illustrated in Figure 8.1, 

drawn to scale, to convey the relative size of the small narrow crack compared to the bulk 

size of the system as a whole. Small injections of nitrogen gas could be used induce 

pressure increases and a vacuum pump used to lower the upper system pressure. A 

charcoal trap could be connected in line with the vacuum to facilitate collection of xenon 

gas during pressure lows. Ideally, the source injected into the bottom of the system would 

not only be radioactive and variable in time, but also of mixed isotopes. For instance, 

both 131I and 133I could be used to provide a time-dependent source of radioactive 131Xe 

and 133Xe. It may also be possible to utilize a strong spontaneous fission source such as 

californium, 252Cf. 
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Figure 8.2 Scaled schematic of a possible experiment to examine the effects of geologic 
transport on a time-dependent source signature (illustration by R James 
Ewing, Pacific Northwest National Laboratory).  
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Such an experiment faces a large number of technical challenges, three major ones are: 

 The rock-container interface must be gas tight; otherwise gas would trivially seep 

preferentially along the edges of the container. This could be facilitated through 

use of a rubber sealant or even a bentonite wrapper that expands to fill voids in 

the interface. 

 The experiment scale suggested in Figures 8.1 and 8.2 are merely estimates. True 

geologic transport takes place over depths of hundreds of meters. Creating a 

closed system to simulate this must be only a fraction as deep. Still, constructing 

such a setup would be a tall task. 

 Also because the system scale is so much smaller than a true geologic system, the 

size of induced pressure variations would have to be carefully considered. Too 

strong of pressure fluctuations would quickly deplete the fracture gas and 

overwhelm any potential effects of fracture-matrix interaction. Along this same 

line, a workable and detectable concentration range of source gas would have to 

be evaluated carefully. 

 

One potential alternative, especially in a tabletop scale of an experiment, could be 

the use of non-radioactive tracer gas. One example might be the use of florescent dyes 

and tags, which are commonly used within the medical industry in place of radioactive 

tracers. The real importance of setting up such an experiment is that source gas in the 

system displays time-varying characteristics such that gas emanated at one time can be 

distinguished from gas emanated at other times. From this, the amount of source mixing 

that takes place in the course transport can be quantified and compared to numerical 

simulation.  
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Conducting such a test within a large scale geological environment would be very 

costly and more challenging, but potentially better demonstrative of the true transport 

processes. The difficulty is in fully characterizing the geologic medium as well as the 

assortment of experimental conditions. Ultimately, an experiment similar to the Non-

Proliferation Experiment could be conducted with radioactive isotopes that are injected 

into the system at known, variable rates to simulate the ingrowth of radioxenon isotopes 

from iodine.  

8.5.2 Infiltration studies 

Atmospheric infiltration into the subsurface operates on the same mechanisms as 

subsurface leakage, and therefore studies of atmospheric infiltration can offer insight into 

the transport processes as a whole. The advantage of such a reverse study is that there are 

accessible locations around the world in the vicinity of medical isotope production plants 

and power reactors where time-varying radionuclide atmospheric concentrations are 

expected. If stack monitoring data could provide source release estimates, then it is 

possible that soil-gas sampling at shallow depths in the nearby regions could exhibit the 

effects of atmospheric infiltration due to surface pressure fluctuations. 

Making use of such a scenario would largely depend on goal of the study being 

conducted. One such study would be to examine the correlation between infiltrating gas 

concentrations and source release, even in the context of fully simulating an on-site 

inspection soil-gas sampling scenario. The time lag between the source releases and 

elevated soil levels would provide meaningful field data on the infiltration process. 

Beyond this providing a framework for larger geologic transport in a UNE setting, such a 

study could yield insight into approaches for countering infiltration within the CTBT OSI 

concept of operations.  
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Appendix A: Table of Geologic Material Compositions 

compositions are in ppm 
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1  H 700 0 1400 0 0

3  Li 30 20 20 30 30

4  Be 2 2.8 2.8 6 6

5  B 9 10 10 10 10

6  C 320 200 200 20000 20000

7  N 20 20 20 1000 1000

8  O 472500 464000 466000 490000 490000

9  F 720 625 625 200 200

11  Na 24500 23600 28300 6300 6300

12  Mg 13900 23300 20900 6300 5000

13  Al 78300 82300 81300 71300 71000

14  Si 305400 281500 277200 330000 330000

15  P 810 1050 1050 800 650

16  S 310 260 260 850 700

17  Cl 320 130 130 100 100

19  K 28200 20900 25900 13600 14000

20  Ca 28700 41500 36300 13700 13700

21  Sc 14 22 22 7 7

22  Ti 4700 5700 4400 4600 5000

23  V 95 135 135 100 100

24  Cr 70 100 100 200 100

25  Mn 690 950 950 850 850

26  Fe 35000 56300 50000 38000 38000

27  Co 12 25 25 8 8

28  Ni 44 75 75 40 40

29  Cu 30 55 55 55 20

30  Zn 60 70 70 70 50
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31  Ga 17 15 15 15 30

32  Ge 1.3 1.5 1.5 1.5 1

33  As 1.7 1.8 1.8 1.8 6

34  Se 0.09 0.05 0.05 0.05 0.2

35  Br 2.9 2.5 2.5 2.5 5

37  Rb 120 90 90 90 100

38  Sr 290 375 375 375 300

39  Y 34 33 33 33 50

40  Zr 160 165 165 165 300

41  Nb 20 20 20 20 0

42  Mo 1 1.5 1.5 1.5 2

44  Ru 0.001 0 0.01 0.01 0

45  Rh 0.001 0 0.005 0.005 0

46  Pd 0.01 0 0.01 0.01 0

47  Ag 0.06 0.07 0.07 0.07 0.1

48  Cd 0.1 0.2 0.2 0.2 0.06

49  In 0.07 0.1 0.1 0.1 0

50  Sn 3 2 2 2 10

51  Sb 0.2 0.2 0.2 0.2 0

52  Te 0.002 0 0.01 0.01 0

53  In 0.5 0.5 0.5 0.5 5

55  Cs 2.7 3 3 3 6

56  Ba 590 425 425 425 500

57  La 44 30 30 30 30

58  Ce 75 60 60 60 50

59  Pr 7.6 8.2 8.2 8.2 0

60  Nd 30 28 28 28 0

62  Sm 6.6 6 6 6 0

63  Eu 1.4 1.2 1.2 1.2 0

64  Gd 8.8 5.4 5.4 5.4 0

65  Tb 1.4 0.9 0.9 0.9 0
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66  Dy 6.1 3 3 3 0

67  Ho 1.8 1.2 1.2 1.2 0

68  Er 3.4 2.8 2.8 2.8 0

69  Tm 0.6 0.48 0.5 0.5 0

70  Yb 0 0 0 0 0

71  Lu 0.6 0.5 0.5 0.5 0

72  Hf 3 3 3 3 6

73  Ta 3.4 2 2 2 0

74  W 1.3 1.5 1.5 1.5 1

75  Re 0.001 0 0.001 0.001 0

76  Os 0 0 0 0 0

77  Ir 0.001 0 0.001 0.001 0

78  Pt 0.005 0 0.01 0.01 0

79  Au 0.004 0.004 0.004 0.004 0

80  Hg 0.03 0.08 0.08 0.08 0.03

81  Tl 0 0 0 0 0

82  Pb 15 12.5 13 13 10

83  Bi 0.2 0.17 0.2 0.2 0

90  Th 11 9.6 7.2 7.2 5

92  U 3.5 2.7 1.8 1.8 1
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Appendix B: FRAM advection scheme 

To counter the spurious oscillations that occur in advection solutions resulting 

from large velocity gradients, the Filtering Remedy and Methodology (FRAM) 

developed by Chapman can be used to determine the advection terms in Equations (3.4) 

and (3.5). An outline of this scheme is as follows. 

Crowley’s so-called second order scheme is first used to calculate provisional 

values for the concentration by adjusting the advection to counter the leading temporal 

truncation error that grows large with sharp velocity gradients. Next, to determine 

acceptable concentration bounds, the local Lagrangian forms of the advective transport 

equations are solved, and the provisional values for the concentration are filtered to 

determine if these bounds are exceeded. If the bounds are exceeded then numerical 

diffusion is artificially introduced to counter the exceeding value. Finally, the advection 

terms as well as any artificial diffusion terms are added back to the tracer transport 

equations. 

First a provisional value for the concentration is estimated using the 1D advection 

equation  

0
C C

u
t y

 
 

 
  (B.1) 

which in discretized form becomes  
1

1 1 0
2

n n n n
ij ij i j i jC C C Cu

t y


   

     
.  (B.2) 

To account for the error introduced by the leading term in the truncated error, an artificial 

diffusion term is introduced on the right side  
1

1 1

2

n n n n
ij ij i j i jC C C Cu

F
t y y


    

      
  (B.3) 

where  
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C
F

y
 


.  (B.4) 

Following the recommendation of Hirt (1968), the diffusion is made large enough to 

counter the oscillations by letting  
2

2 2

u y u t  
    (B.5) 

By including Equations (B.5) and (B.4) in Equation (B.3) and solving for the provisional 

concentration, 1 1n n
ij ijC C   , the result is  

 
2 2

1 11
1 12

2
2 2

n n
i j i jn n n n n

ij ij i j ij i j

C Cu t u t
C C C C C
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        

  (B.6) 

In areas of the mesh where / 1u t y   , Equation (B.6) is enough to stabilize the 

advection solution. However, in regions of particularly high pressure gradients, additional 

dissipation ε must be added. Consider now the Lagrangian equation for C or rather the 

flux, uC  

  0
d u

C C
dt y


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
  (B.7) 

from which  

1 1*

2
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C C C t

y
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.  (B.8) 

Equation (B.8) essentially says that the upper bound *
ijC  is represented by a pure 

translation u t  of the previous time concentration. 

 Now a filtering scheme can be established for the provisional concentration 1n
ijC 

by defining the minimum and maximum acceptable values for the provisional 

concentration by  
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If the provisional concentration 1n
ijC   does not fall between these two values, then 

an additional artificial diffusive step   is added. If a “gate” parameter is defined as  
10       

1       otherwise

n
ij ij ij

ij

C C C


     



  (B.10) 

then the diffusive step can be written  

 2
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. (B.11) 

The final filtered advection term then becomes  
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Appendix C: UTEX Benchmarking 

C.1 DERIVATION OF HARMONIC PRESSURE RESPONSE 

The coupled pore-fluid diffusion equations are reiterated here (note that x in this 

derivation is vertical depth coordinate):  
/2
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p p p
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t A x x t
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m
p p

t y y

   

     
.  (C.2) 

Again, f and m are the pore-fluid diffusivities of the fracture and matrix respectively; 

assuming ݌ ≪  ଴ these diffusivities are approximately constant with depth and given by݌

 2 0 0       and         
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f m
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  . 

The integral in the fracture-matrix interaction term couples the pressure response within 

the fracture to the pressure response deeper within the bulk matrix at the point ሺݔ, 0ሻ. 

Using the horizontal pressure equation (C.2) in this integral  
/2 /2

0 0

/2

0

/2 0

m m

m

m

m

y

m
y

m
y y

p p
dy dy

t y y

p

y

p p

y y

 















 

   
     

 
   

                

 

 

Assuming a matrix slab width of ߜ௠, the system models a unit cell of half-slab width 

 ௠/2. At this point within the matrix slab there is a reflective boundary condition; weߜ

therefore have ሺ߲ݕ߲/݌ሻ௬ୀఋ೘/ଶ ൌ 0. Assuming a constant fracture cross-sectional area of 

ܣ ൌ   ௙/2 then Equations (C.1) and (C.2) becomeߜ
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  (C.3) 
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2

2m
p p

t y
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
 

  (C.4) 

Separation of variables is employed to obtain an analytical solution to this coupled 

system of equations by looking for a pressure solution of the form 

     , ; ( )p x y t X x Y y T t .       (C.5) 

At the top of the fracture, ሺݔ, ሻݕ ൌ ሺ0,0ሻ, the pressure should follow the surface pressure, 

taken to be harmonically varying,  

  00,0; cosp t p p t  . 

Devoting attention only to the variation of pressure from the average ݌଴ does not change 

equations (C.3) and (C.4) for the pressure response. The boundary condition above then 

becomes 

     0 00,0; ( ) cosp t X Y T t t  .      (C.6) 

The boundary conditions at ݔ ൌ ݕ and ܮ ൌ ௠/2 are reflective, so ሺ݀ܺߜ ⁄ݔ݀ ሻ௫ୀ௅ ൌ 0 and 

ሺܻ݀ ⁄ݕ݀ ሻ௬ୀఋ೘/ଶ ൌ 0. 

Applying the separation of variables technique to Equation (C.4) gives  

( ) ( ) ( ) ( ) ( ) ( )mX x Y y T t X x T t Y y   

2
1

( ) ( )

( ) ( )m
T t Y y

T t Y y
 


  


  (C.7) 

Considering the left side of Equation (C.7) for the temporal dependence and using 

Equation (C.6) gives  

( ) i tT t e   (C.8) 

where the constant ߣଵ ൌ ݅√݅߱ has been identified. Then the second part of Equation 

(C.7) becomes  

2 2
1 2( ) y yY y Y e Y e     (C.9) 

where  
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Applying the first boundary condition to Equation (C.9): 
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then the second boundary condition gives  
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Plugging the coefficients Equation (C.10) back into (C.9), the y-independence can be 

written  
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Now looking at Equation (C.3) 
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where from Equation (C.11)  
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Finally letting  
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the x-dependency can be written from Equation (C.12) as  

1 2( ) fm fmx x
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Similar to the y-dependence, the boundary conditions require ܺሺ0ሻ ൌ 1 and ܺᇱሺܮሻ ൌ 0 so 

that following the same procedure as for Y(y) gives  

cosh 1
( )

cosh

fm

fm

x
L

X x




  
    (C.14) 

where f  becomes 
f

f L i 
  . Combining Equations (C.8), (C.11) , and (C.14) the 

final analytical solution for the pressure response can be written  

0

2
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m fm

y x
p x y t p L

e
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 

 

                
 
  

 (C.15) 
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with Fourier numbers 

f
f L i 

   

2
m

m
m

i
 


  

2 2 tanh
1 m m m

fm f
f f m

   
  

 
  

    

 

C.2 DIFFUSION ANALYSIS OF UTEX CODE 

As a test of the robustness of the UTEX numerical solution scheme for the actual 

transport equations, it is simplest to consider individual transport mechanisms as they are 

modeled by the code. The terms in the transport equations represent two physical 

transport mechanisms: diffusion and advection. A simple analysis of the diffusion 

transport in UTEX is considered here. Consider a very simple scenario as depicted below 

in Figure C.1 in which a single matrix cell is given an initial concentration, C0, and the 

rest of the matrix is void of any contaminant. Now allow the system to diffuse throughout 

the matrix row only assuming the system is closed and bounded at the ends, ݕ ൌ 0 and 

ݕ ൌ  .௠ߜ

 

 

Figure C.1 Simple diffusion 1D diffusion scenario. 
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This is a scenario that is easily modeled in the UTEX code by forcing the mass-

interaction terms and advection terms (and radioactive decay) to all be zero in the 

transport equations. Intuitively, we know that the concentration initially confined to the 

middle cell must diffuse outwards throughout the rest of the matrix row until a constant 

concentration is reached throughout. 

The analogous analytical problem can be defined as such; assuming a 

concentration C(y,t) defined on [0,δm], the diffusion of the gas follows  
2

2

C C
D

t y

 


 
. 

The initial state of the system can be stated  

  0,0 ( / 2)mC y C    

with closed boundary conditions,  

0

0
my y

C C

y y  

    
        

. 

The solution to this familiar equation can be found through separation of variables and 

written in terms of a Fourier expansion as  

 
2

0

1

1
,

2
m

n
D t

n
mn

n y
C y t D D cos e






    
 



    
 

  

where  

 
0

2
,0

m

n
m m

n y
D C y cos dy

 
 

   
  . 

Substituting in the initial condition in the expression for Dn and simplifying leads to the 

solution for the concentration in the matrix row  
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2
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m m mn
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C y t cos cos e
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

        
   

  

 
Results 
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The results that follow in Figure C.2 and C.3 were obtained by running the 

numerical code using a mesh defined by N × M = 100 × 200 using time steps of size 

Δt = 60 s and a matrix width of δm = 1 m. The initial concentration is taken as C0 = 5.252 

(arbitrary units). The analytical solution uses N = 10,000 steps to estimate the Fourier 

expansion.  
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Figure C.2 Numerical UTEX and analytical diffusion solutions plotted against each other 
for comparison at various times up to 2 hours. 
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Figure C.3 Numerical UTEX and analytical diffusion solutions plotted against each other 
for comparison at various times, up to 10 hours. 
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C.3 ADVECTION ANALYSIS OF UTEX CODE 

The second physical transport mechanism at work in the vertical transport model 

is the bulk flow of gas by advection. Unlike the diffusion within the system , which 

operates everywhere on the same scale since the diffusion coefficients for the radioxenon 

isotopes vary only a tiny amount, the advective flow is determined by the pressure 

gradients that exist in the system and varies over several orders of magnitude. Near the 

top of the system and at point closer to the fracture, the pressure response closely follows 

the changing surface pressure, thus at these points exist higher pressure gradients and 

therefore higher fluid velocities. During a simulation with the amplitude in pressure 

variation being Δp = 5/30p0, the maximum fluid velocity calculated within the system 

was ݑ௠௔௫ ൎ 4E-4 m/s. Since this ∆݌ is a liberal estimate of the maximum pressure 

variation that could realistically be encountered, this maximum velocity serves as the 

ceiling for expected fluid velocities. 

Removal of the diffusion and mass interaction terms from the transport equations 

leaves the 1-D advection equations of the form  

 ( , ) 1
( , )

C x t
C x t u

t x
 

 
 

. 

Generally, the fluid velocity ݑ ൌ ,ݔሺݑ  ሻ is a function of position in the system asݐ

determined by the pressure response at time, ݐ. This makes an analytical solution very 

difficult for all but the simplest velocity distributions.  

Of course, the simplest case is ݑሺݔ, ሻݐ ൌ  ଴ so that the fluid velocity is a constantݑ

throughout the system for all times. Now instead of a complicated, largely intractable 

equation we have the simple linear advection equation  
C u C

t x
 

 
 

 

which has the rather obvious solution  
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  0,
u

C x t C x t


 
  

 
 

where ܥሺݔ, 0ሻ ൌ  ሻ is just the initial concentration distribution. In other words, theݔ଴ሺܥ

shape of ܥ଴ሺݔሻ does not change but is shifted in position. 

While this constant velocity scenario is somewhat uninteresting, it does serve well 

as an analytical test of the numerical advection portion of the transport code. Similar to 

the diffusion test before, assume an initial concentration distribution of the form ܥ଴ሺݔሻ ൌ

௠ߜሺߜ଴ܥ 2⁄ ሻ. For a given flow velocity, ݑ, the analytical solution for the concentration is 

just  

  0, / 2m
u

C x t C t 


 
  

 
. 

To test the numerical advection solution, a single cell within a horizontal matrix 

row was initially filled with an initial concentration of 5.252 Ci. Diffusion and decay 

constants were set to 0 and all interaction terms were forced to 0, so that in essence the 

matrix rows have closed boundaries. The pressure response function was turned off 

completely and the flow velocity throughout the system was set to a constant value for 

each simulation. Figure C.4 shows an example of the numerical solution versus the 

analytical solution for a specific time. 
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This example exhibits the characteristics of where the error in the numerical 

solution comes into play. The red line plots the analytical solution, which shows a sharp 

peak at a single matrix cell with the full concentration, C0 = 5.252. The blue line plots the 

numerical calculation, and is centered around the same matrix location as the analytical 

solution, however, the peak shows a forward spread in the direction of the fluid velocity. 

This is a depiction of numerical diffusion, which results from the fact that the numerical 

system is a discrete approximation of a continuous phenomenon. For a given flow 

x = uΔt that is less than the mesh spacing Δx, the concentration in the finite difference 

scheme cannot be moved in a unit smaller than Δx. Instead the transport is approximated 

by placing some portion of the mass in the adjacent cell and leaving the rest in the 

original cell, so that the average transport equals x = uΔt. However, now there is a 

portion of the mass that has been numerically diffused a larger distance than uΔt. This 

 

Figure C.4 Example comparison between numerical and analytical solution; the direction 
of flow is to the left. 
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results in the spread of the initial concentration peak and is responsible for the error in the 

numerical approximation. 

This concept is precisely that of the Courant Number, which is defined as the 

portion of mass that can be transported in a single time step,  
Δ

Δ
r

u t
C

x
 . 

Ideally the Courant Number should be as small as possible, say Cr < 1, to minimize 

numerical oscillations and the dispersion depicted above. An effect opposite of the above 

numerical diffusion is created when the fluid velocity results in a transport x = uΔt that is 

much greater than Δx. In this case Cr >1 and the numerical scheme suppresses transport 

because it allows mass to move only to adjacent cells and not multiple cells. 
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Appendix D: Variability of other isotopic ratios of radioxenon 

 

 

 

 

 

Figure D.1 Three isotope MIRC plot showing 131mXe/133Xe vs. 133mXe/133Xe for HEU fast 
pulse fission source term with standard PWR loop shown. 
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Figure D.2 Two isotope MIRC plot showing 131mXe/133Xe vs. time for HEU fast pulse 
fission source term, with PWR signature (green) corresponding to a t = 0 
release 90 days into standard operational cycle.  

 

Figure D.3 Three isotope MIRC plot showing 133mXe/133Xe vs. time for HEU fast pulse 
fission source term, with PWR signature (green) corresponding to a t = 0 
release 90 days into standard operational cycle. 
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Appendix E: Elemental compositions and properties for geologies used 
in neutron flux profiling 

Table E.1 Elemental compositions in concentrations of parts per million (ppm) utilized in 
neutron flux profiling, from Fabryka-Martin (1988). 

 
Z A

Ultra-
mafic 

Basalt
Hi-Ca 

granite
Low-Ca 
granite

Clays, 
shales 

Sand-
stones 

Carbon-
ate

H,w 1 1.01 4000 4000 410 410 4600 9600 2000
Li 3 6.94 0.5 17 24 40 60 15 5
Be 4 9.01 0.2 1 2 3 3 0.5 0.5
B 5 9.01 3 5 9 10 100 35 20
C 6 12.01 100 100 300 300 10000 300 114000
N 7 14.01 6 20 20 20 60 20 20
O,rk 8 16 401200 397300 474600 482900 494000 437100 476700
O,w 8 16 35700 35700 3700 3700 41700 87000 18500
F 9 19 100 400 520 850 500 270 330
Na 11 22.99 4200 18000 28400 25800 660 3300 400
Mg 12 24.31 204000 46000 9400 1600 13400 7000 47000
Al 13 26.98 20000 78000 82000 72000 104500 25000 4200
Si 14 28.09 205000 230000 314000 347000 238000 368000 24000
P 15 30.97 220 1100 920 600 770 170 400
S 16 32.07 300 300 300 300 3000 240 1200
Cl 17 35.45 85 60 130 200 160 10 150
K 19 39.1 40 8300 25200 42000 22800 10700 2700
Ca 20 40.08 25000 76000 25300 5100 25300 39100 302300
Sc 21 44.96 15 30 14 7 10 1 1
Ti 22 47.87 300 13800 3400 1200 4500 1500 400
Cr 24 52 1600 2000 22 4.1 100 35 11
Mn 25 54.94 1620 1500 540 390 670 50 1100
Fe 26 55.85 94300 86500 29600 14200 33300 9800 3800
Co 27 58.93 150 46 7 1 20 0.3 0.1
Ni 28 58.69 2000 130 15 4.5 95 2 20
Se 34 78.96 0.05 0.05 0.05 0.05 0.6 0.05 0.08
Br 35 79.9 1 3.6 4.5 1.3 6 1 6.2
Rb 37 85.47 2 30 110 170 200 60 3
Sr 38 87.62 10 465 440 100 450 20 610
Zr 40 91.22 45 140 140 175 200 220 19
Mo 42 95.94 0.3 1.5 1 1.3 2 0.2 0.4
Ru 44 101.07 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Te 52 127.6 0.001 0.001 0.002 0.002 0.01 0.002 0.02
I 53 126.6 0.5 0.5 0.5 0.5 1 1.7 1.2
Cs 55 132.91 0.1 1 2 4 12 0.5 0.5
Ba 56 137.33 0.4 330 420 840 800 50 10
Sm 62 150.36 0.5 5.3 8.8 10 6.5 10 1.3
Gd 64 157.25 0.5 5.3 8.8 10 6.5 10 1.3
Th 90 232.04 0.004 4 8.5 17 11 1.7 1.7
U 92 238.03 0.001 1 3 3 3.2 0.45 2.2
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Table E.2 Physical properties of the geology types utilized in neutron flux profiling, from 
Fabryka-Martin (1988). 

 
Ultra-
mafic 

Basalt
Hi-Ca 

granite
Lo-Ca 
granite

Clays, 
shales

Sand- 
stone 

Carbon-
ate

porosity 0.1 0.1 0.01 0.01 0.1 0.2 0.05

grain density [g/cm3] 3 3 2.7 2.7 2.6 2.6 2.8

bulk density [g/cm3] 2.8 2.8 2.7 2.7 2.4 2.3 2.7

ppm H2O 35700 35700 3700 3700 41700 87000 18500

 

 

Table E.3 Total neutron production rates as a function of depth (mwe) for the geology 
types utilized in neutron flux profiling, from Fabryka-Martin (1988). 

Depth 
(mwe) 

Ultra-
mafic 

Basalt
Hi-Ca

granite
Lo-Ca
granite

Clays,
shales

Sand- 
stone 

Carbon-
ate

0.5 1513 1526 1526 1528 1520 1509 1503

1 1114 1128 1128 1129 1121 1109 1103

2 622 636 636 638 629 617 610

3 356 369 369 371 363 352 346

4 216 228 229 231 223 212 207

5 140 151 152 155 148 137 133

10 40.6 47.9 51.5 54.6 48.8 39.4 38.0

20 15.5 20.5 25.5 29.0 24.2 15.7 16.2

30 9.5 14.0 19.3 22.9 18.3 10.0 10.9

50 4.2 8.3 13.9 17.6 13.2 5.0 6.3

100 1.4 5.3 11.0 14.7 10.4 2.3 3.7

200 0.39 4.3 10.0 13.7 9.4 1.3 2.7

300 0.18 4.0 9.8 13.5 9.2 1.1 2.5

500 0.054 3.9 9.6 13.4 9.0 0.97 2.4

1000 0.011 3.9 9.6 13.3 9.0 0.92 2.4

2000 0.0053 3.9 9.6 13.3 9.0 0.92 2.4

3000 0.0049 3.9 9.6 13.3 9.0 0.92 2.4
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Table E.4 Thermal neutron flux as a function of depth (mwe) for the geology types 
utilized in neutron flux profiling, assuming all neutrons are thermalized (see 
Table A.5 ), from Fabryka-Martin (1988). 

Depth 
(mwe) 

Ultra-
mafic 

Basalt
Hi-Ca

granite
Lo-Ca
granite

Clays,
shales

Sand- 
stone 

Carbon-
ate

0.5 280764 184766 232698 224438 142636 188368 360451
1 206718 136509 171889 165847 105186 138505 264574
2 115440 77037 96937 93624 59020 77027 146340
3 66054 44659 56283 54499 34072 43888 82925
4 40095 27599 34892 33923 20965 26495 49706
5 25970 18260 23226 22714 13842 17065 31785

10 7524 5800 7856 8012 4581 4914 9117
20 2872 2480 3890 4261 2273 1960 3893
30 1758 1692 2945 3364 1719 1248 2621
50 786 1008 2121 2583 1235 625 1505

100 258 642 1677 2160 972 283 881
200 72 515 1520 2011 878 161 656
300 33 489 1488 1980 859 136 608
500 10 473 1469 1962 847 121 580

1000 2.1 468 1462 1956 843 115 570
2000 1 467 1462 1955 843 115 569
3000 0.92 467 1462 1955 843 188368 360451

 

Table E.5 Thermal and epithermal neutron flux breakdown in the deep lithosphere, from 
Fabryka-Martin (1988). 

U Th Neutron flux, n/cm2/yr Flux for 100%

Rock Type ppm ppm Thermal Epithermal Total thermalization

Ultramafic 0.001 0.004 0.86 0.08 0.95 0.90 

Basalts 1 4 435 65 500 467 

Hi-Ca granite 3 8.5 1155 574 1729 1462 

Low-Ca granite 3 17 1544 799 2343 1955 

Clays, shales 3.2 11 707 120 827 843 

Sandstones 0.45 1. 7 109 7 116 115 

Carbonates 2.2 1. 7 516 61 577 569 
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Table E.6 Thermal and epithermal neutron flux estimates used in soil-gas background 
calculations for the geologies listed in Table A.1. 

Thermal Flux Profile (cm-2 yr-1) 

Depth 
d(mwe) 

Ultra-
mafic Basalt 

Hi-Ca 
granite 

Lo-Ca 
granite 

Clays, 
shales 

Sand-
stone 

Carbo-
nate 

0.5 265547 170208 183597 177386 119404 178784 323145
1 195518 125815 135713 131066 88061 131392 237145
2 109167 70938 76519 74066 49411 73101 131150
3 62482 41158 44395 43069 28516 41704 74390
4 37910 25431 27552 26817 17518 25117 44505
5 24571 16842 18288 17994 11626 16232 28595

10 7126 5343 6196 6339 3834 4668 8170
20 2720 2287 3068 3367 1901 1860 3483
30 1667 1562 2322 2658 1438 1185 2344
50 737 926 1672 2043 1037 592 1355

100 246 591 1323 1707 817 273 796
200 68 480 1203 1590 738 154 581
300 32 446 1179 1567 723 130 538
500 9.48 435 1155 1556 707 115 516

1000 1.93 435 1155 1544 707 109 516
2000 0.93 435 1155 1544 707 109 516
3000 0.86 435 1155 1544 707 109 516

 
Epithermal Flux Profile (cm2 yr-1) 

Depth 
d(mwe) 

Ultra-
mafic Basalt 

Hi-Ca 
granite 

Lo-Ca 
granite 

Clays, 
shales 

Sand-
stone 

Carbo-
nate 

0.5 24702 25433 91242 91795 20267 11482 38201
1 18188 18800 67445 67825 14947 8438 28035
2 10155 10600 38028 38328 8387 4695 15504
3 5812 6150 22063 22288 4840 2678 8794
4 3527 3800 13692 13877 2973 1613 5261
5 2286 2517 9088 9312 1973 1042 3380

10 663 798 3079 3280 651 300 966
20 253 342 1525 1742 323 119 412
30 155 233 1154 1376 244 76 277
50 69 138 831 1057 176 38 160

100 23 88 658 883 139 18 94
200 6.37 72 598 823 125 9.89 68.63
300 2.94 67 586 811 123 8.37 63.54
500 0.88 65 574 805 120 7.38 61.00

1000 0.18 65 574 799 120 7.00 61.00
2000 0.09 65 574 799 120 7.00 61.00
3000 0.08 65 574 799 120 7.00 61.00
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Appendix F. Radionuclide background calculations 

 

 

 

Table F.1 Calculated radioxenon production rates (top) and equilibrium concentrations 
(bottom) from spontaneous fission of the seven geologies in Table E.1. 

Xe Spontaneous Fission Production Rate, Pn [mBq/m3/s] 

Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m

Ultramafic 7.31E-13 1.48E-09 1.02E-10 1.90E-08 1.01E-07

Basalt 7.31E-10 1.48E-06 1.02E-07 1.90E-05 1.01E-04

Hi-Ca granite 2.11E-09 4.29E-06 2.96E-07 5.50E-05 2.91E-04

Lo-Ca granite 2.11E-09 4.29E-06 2.96E-07 5.50E-05 2.91E-04

Clays/shales 2.00E-09 4.07E-06 2.80E-07 5.21E-05 2.76E-04

Sandstone 2.70E-10 5.48E-07 3.78E-08 7.02E-06 3.72E-05

Carbonate 1.55E-09 3.14E-06 2.17E-07 4.03E-05 2.13E-04

 

 
Xe Spontaneous Fission Equilibrium Concentration [mBq/m3] 

Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m

Ultramafic 1.09E-06 9.69E-04 2.79E-05 9.02E-04 1.33E-04

Basalt 1.09E-03 9.69E-01 2.79E-02 9.02E-01 1.33E-01

Hi-Ca granite 3.14E-03 2.80E+00 8.07E-02 2.61E+00 3.85E-01

Lo-Ca granite 3.14E-03 2.80E+00 8.07E-02 2.61E+00 3.85E-01

Clays/shales 2.98E-03 2.66E+00 7.65E-02 2.47E+00 3.65E-01

Sandstone 4.02E-04 3.58E-01 1.03E-02 3.33E-01 4.92E-02

Carbonate 2.31E-03 2.06E+00 5.92E-02 1.91E+00 2.82E-01
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Table F.2 Calculated radioxenon production rates from n-induced fission for select depths 
of the seven geologies in Table E.1. 

Total n-induced Fission Production Rates (mBq/m3/s) 

Depth 
(mwe) 

Ultramafic Basalt 

Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m

0.5 6.07E-14 2.37E-11 1.65E-12 3.18E-10 1.91E-09 3.92E-11 1.56E-08 1.08E-09 2.09E-07 1.25E-06

1 4.47E-14 1.74E-11 1.21E-12 2.34E-10 1.41E-09 2.90E-11 1.15E-08 8.01E-10 1.55E-07 9.27E-07

5 5.62E-15 2.19E-12 1.52E-13 2.94E-11 1.77E-10 3.88E-12 1.54E-09 1.07E-10 2.07E-08 1.24E-07

10 1.63E-15 6.35E-13 4.42E-14 8.53E-12 5.13E-11 1.23E-12 4.89E-10 3.40E-11 6.57E-09 3.94E-08

100 5.62E-17 2.19E-14 1.52E-15 2.94E-13 1.77E-12 1.36E-13 5.41E-11 3.76E-12 7.27E-10 4.36E-09

1000 4.41E-19 1.72E-16 1.20E-17 2.31E-15 1.39E-14 1.00E-13 3.98E-11 2.77E-12 5.35E-10 3.20E-09

Hi-Ca Granite  Lo-Ca Granite 

0.5 1.27E-10 5.62E-08 3.91E-09 7.54E-07 4.45E-06 1.25E-10 5.56E-08 3.86E-09 7.49E-07 4.41E-06

1 9.40E-11 4.16E-08 2.89E-09 5.57E-07 3.29E-06 9.24E-11 4.11E-08 2.85E-09 5.53E-07 3.26E-06

5 1.27E-11 5.60E-09 3.89E-10 7.51E-08 4.43E-07 1.27E-11 5.64E-09 3.92E-10 7.60E-08 4.47E-07

10 4.29E-12 1.90E-09 1.32E-10 2.54E-08 1.50E-07 4.47E-12 1.99E-09 1.38E-10 2.68E-08 1.57E-07

100 9.16E-13 4.05E-10 2.82E-11 5.43E-09 3.20E-08 1.20E-12 5.35E-10 3.71E-11 7.21E-09 4.24E-08

1000 8.00E-13 3.54E-10 2.46E-11 4.74E-09 2.80E-08 1.09E-12 4.84E-10 3.36E-11 6.52E-09 3.83E-08

Clays/shales Sandstone 

0.5 7.56E-11 3.02E-08 2.10E-09 4.06E-07 2.43E-06 1.51E-11 5.81E-09 4.04E-10 7.80E-08 4.70E-07

1 5.57E-11 2.23E-08 1.55E-09 2.99E-07 1.79E-06 1.11E-11 4.27E-09 2.97E-10 5.73E-08 3.45E-07

5 7.36E-12 2.94E-09 2.05E-10 3.95E-08 2.37E-07 1.37E-12 5.27E-10 3.67E-11 7.08E-09 4.26E-08

10 2.43E-12 9.71E-10 6.75E-11 1.30E-08 7.80E-08 3.93E-13 1.52E-10 1.05E-11 2.04E-09 1.23E-08

100 5.17E-13 2.07E-10 1.44E-11 2.78E-09 1.66E-08 2.29E-14 8.85E-12 6.16E-13 1.19E-10 7.16E-10

1000 4.47E-13 1.79E-10 1.24E-11 2.40E-09 1.44E-08 9.18E-15 3.54E-12 2.46E-13 4.76E-11 2.86E-10

Carbonate 

0.5 1.57E-10 6.16E-08 4.28E-09 8.26E-07 4.96E-06

1 1.15E-10 4.52E-08 3.14E-09 6.06E-07 3.64E-06

5 1.39E-11 5.45E-09 3.79E-10 7.30E-08 4.39E-07

10 3.96E-12 1.56E-09 1.08E-10 2.09E-08 1.25E-07

100 3.85E-13 1.52E-10 1.05E-11 2.03E-09 1.22E-08

1000 2.50E-13 9.83E-11 6.84E-12 1.32E-09 7.92E-09
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Table F.3 Calculated radioxenon production rates from all sources for select depths of the 
seven geologies in Table E.1. 

Total Xe Production Rates from all sources (mBq/m3/s) 

Depth 
(mwe) 

Ultramafic Basalt 

Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m Xe-131m Xe-133 Xe-133m Xe-135 Xe-135m 

0.5 1.18E-06 9.84E-04 2.83E-05 9.17E-04 1.36E-04 1.15E-03 9.79E-01 2.82E-02 9.12E-01 1.35E-01

1 1.15E-06 9.80E-04 2.82E-05 9.13E-04 1.35E-04 1.13E-03 9.76E-01 2.81E-02 9.09E-01 1.34E-01

5 1.10E-06 9.70E-04 2.79E-05 9.03E-04 1.33E-04 1.09E-03 9.70E-01 2.79E-02 9.03E-01 1.33E-01

10 1.09E-06 9.69E-04 2.79E-05 9.02E-04 1.33E-04 1.09E-03 9.69E-01 2.79E-02 9.02E-01 1.33E-01

100 1.09E-06 9.69E-04 2.79E-05 9.02E-04 1.33E-04 1.09E-03 9.69E-01 2.79E-02 9.02E-01 1.33E-01

1000 1.09E-06 9.69E-04 2.79E-05 9.02E-04 1.33E-04 1.09E-03 9.69E-01 2.79E-02 9.02E-01 1.33E-01

Hi-Ca Granite  Lo-Ca Granite 

0.5 3.33E-03 2.84E+00 8.18E-02 2.64E+00 3.91E-01 3.33E-03 2.84E+00 8.18E-02 2.64E+00 3.91E-01

1 3.28E-03 2.83E+00 8.15E-02 2.64E+00 3.89E-01 3.28E-03 2.83E+00 8.15E-02 2.64E+00 3.89E-01

5 3.16E-03 2.81E+00 8.08E-02 2.61E+00 3.86E-01 3.16E-03 2.81E+00 8.08E-02 2.61E+00 3.86E-01

10 3.15E-03 2.80E+00 8.07E-02 2.61E+00 3.85E-01 3.15E-03 2.80E+00 8.07E-02 2.61E+00 3.85E-01

100 3.15E-03 2.80E+00 8.07E-02 2.61E+00 3.85E-01 3.15E-03 2.80E+00 8.07E-02 2.61E+00 3.85E-01

1000 3.15E-03 2.80E+00 8.07E-02 2.61E+00 3.85E-01 3.15E-03 2.80E+00 8.07E-02 2.61E+00 3.85E-01

Clays/shales Sandstone 

0.5 3.09E-03 2.68E+00 7.71E-02 2.49E+00 3.68E-01 4.24E-04 3.62E-01 1.04E-02 3.37E-01 4.98E-02

1 3.06E-03 2.67E+00 7.69E-02 2.49E+00 3.67E-01 4.18E-04 3.61E-01 1.04E-02 3.36E-01 4.97E-02

5 2.99E-03 2.66E+00 7.66E-02 2.48E+00 3.65E-01 4.04E-04 3.58E-01 1.03E-02 3.34E-01 4.93E-02

10 2.99E-03 2.66E+00 7.65E-02 2.47E+00 3.65E-01 4.02E-04 3.58E-01 1.03E-02 3.33E-01 4.92E-02

100 2.98E-03 2.66E+00 7.65E-02 2.47E+00 3.65E-01 4.02E-04 3.58E-01 1.03E-02 3.33E-01 4.92E-02

1000 2.98E-03 2.66E+00 7.65E-02 2.47E+00 3.65E-01 4.02E-04 3.58E-01 1.03E-02 3.33E-01 4.92E-02

Carbonate 

0.5 2.54E-03 2.10E+00 6.04E-02 1.95E+00 2.89E-01

1 2.48E-03 2.08E+00 6.00E-02 1.94E+00 2.87E-01

5 2.33E-03 2.06E+00 5.93E-02 1.92E+00 2.83E-01

10 2.31E-03 2.06E+00 5.92E-02 1.91E+00 2.83E-01

100 2.31E-03 2.06E+00 5.92E-02 1.91E+00 2.82E-01

1000 2.31E-03 2.06E+00 5.92E-02 1.91E+00 2.82E-01
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Table F.4 Calculated 37Ar production rates and equilibrium concentrations due to 
40Ca(n,α)37Ar neutron activation. 

37Ar Production rate (mBq/m3/s) by 40Ca Activation 
Depth 
(mwe) 

Ultramafic Basalt Hi-Ca granite Lo-Ca granite Clays, shales Sandstone Carbonate

0.5 1.52E-05 4.50E-05 4.85E-05 9.82E-06 1.01E-05 9.65E-06 2.66E-04
1 1.12E-05 3.33E-05 3.58E-05 7.26E-06 7.47E-06 7.09E-06 1.95E-04
2 6.25E-06 1.88E-05 2.02E-05 4.10E-06 4.19E-06 3.95E-06 1.08E-04
3 3.58E-06 1.09E-05 1.17E-05 2.38E-06 2.42E-06 2.25E-06 6.12E-05
4 2.17E-06 6.73E-06 7.27E-06 1.48E-06 1.49E-06 1.36E-06 3.66E-05
5 1.41E-06 4.46E-06 4.83E-06 9.96E-07 9.86E-07 8.76E-07 2.35E-05

10 4.08E-07 1.41E-06 1.64E-06 3.51E-07 3.25E-07 2.52E-07 6.72E-06
50 4.22E-08 2.45E-07 4.42E-07 1.13E-07 8.79E-08 3.20E-08 1.11E-06

100 1.41E-08 1.56E-07 3.49E-07 9.45E-08 6.93E-08 1.47E-08 6.54E-07
500 5.42E-10 1.15E-07 3.05E-07 8.61E-08 5.99E-08 6.20E-09 4.24E-07

1000 1.10E-10 1.15E-07 3.05E-07 8.55E-08 5.99E-08 5.88E-09 4.24E-07
2000 5.32E-11 1.15E-07 3.05E-07 8.55E-08 5.99E-08 5.88E-09 4.24E-07
3000 4.92E-11 1.15E-07 3.05E-07 8.55E-08 5.99E-08 5.88E-09 4.24E-07

 
37Ar Radioactive Equilibrium Concentration (mBq/m3) from 40Ca activation 

Depth 
(mwe) 

Ultramafic Basalt Hi-Ca granite Lo-Ca granite Clays, shales Sandstone Carbonate

0.5 66.37 196.65 211.74 42.89 44.22 42.15 1160.73
1 48.87 145.36 156.51 31.69 32.61 30.97 851.82
2 27.28 81.96 88.25 17.91 18.30 17.23 471.09
3 15.62 47.55 51.20 10.41 10.56 9.83 267.21
4 9.48 29.38 31.77 6.48 6.49 5.92 159.86
5 6.14 19.46 21.09 4.35 4.31 3.83 102.71

10 1.78 6.17 7.15 1.53 1.42 1.10 29.35
50 0.18 1.07 1.93 0.49 0.38 0.14 4.87

100 0.06 0.68 1.53 0.41 0.30 0.06 2.86
500 0.0024 0.50 1.33 0.38 0.26 0.03 1.85

1000 0.0005 0.50 1.33 0.37 0.26 0.03 1.85
2000 0.0002 0.50 1.33 0.37 0.26 0.03 1.85
3000 0.0002 0.50 1.33 0.37 0.26 0.03 1.85
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Table F.5 Calculated 37Ar equilibrium concentrations due to muon interactions with 
potassium in natural geologies. 

Ar-37 Equilibrium Concentration (mBq/m3) from all K(μ,X·n) reactions 
Depth 
(mwe) 

Ultramafic Basalt Hi-Ca granite
Low-Ca 

granite
Clay/shale Sandstone Carbonate

0.5 0.14 22.48 72.63 123.69 60.25 27.54 7.61

1 0.17 26.97 87.16 148.43 72.30 33.05 9.14

2 0.17 26.97 87.16 148.43 72.30 33.05 9.14

3 0.14 23.38 75.54 128.64 62.66 28.64 7.92

4 0.13 20.68 66.82 113.79 55.43 25.34 7.00

5 0.11 17.08 55.20 94.00 45.79 20.93 5.79

10 0.05 7.64 24.70 42.05 20.48 9.36 2.59

50 0.0033 0.54 1.74 2.97 1.45 0.66 0.18

100 0.0008 0.13 0.44 0.74 0.36 0.17 0.05

200 0.0002 0.03 0.09 0.15 0.07 0.03 0.01

300 0.0001 0.01 0.03 0.05 0.02 0.01 0.0030

Table F.6 Total estimated maximum 37Ar equilibrium concentrations due to both 40Ca 
neutron activation and muon interactions with potassium in natural 
geologies; note, this is the summation of results in Table F.4 (bottom) and 
Table F.5. 

Total Ar-37 Equilibrium Concentration (mBq/m3) from all sources 
Depth 
(mwe) 

Ultramafic Basalt Hi-Ca granite
Low-Ca 

granite
Clay/shale Sandstone Carbonate

0.5 66.51 219.13 284.37 166.58 104.46 69.68 1168.34

1 49.03 172.34 243.67 180.12 104.91 64.02 860.96

2 27.45 108.93 175.41 166.33 90.60 50.28 480.22

3 15.76 70.93 126.74 139.05 73.22 38.47 275.13

4 9.60 50.06 98.60 120.28 61.92 31.26 166.87

5 6.25 36.54 76.29 98.35 50.09 24.76 108.50

10 1.83 13.82 31.84 43.59 21.90 10.46 31.93

50 0.19 1.61 3.67 3.46 1.83 0.80 5.05

100 0.06 0.82 1.96 1.15 0.66 0.23 2.90

200 0.02 0.58 1.47 0.53 0.35 0.07 2.09

300 0.01 0.52 1.39 0.43 0.29 0.04 1.93
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Appendix G. Atmospheric infiltration 

Figure G.1 Xe-133 concentration curves for each of days 1-7 as a function of distance 
from fracture at a depths of 9 m and 18 m due to simulated infiltration. The 
dashed line represents an approximate detection limit. 
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Figure G.2 Xe-133 concentration curves for each of days 1-7 as a function of distance 
from fracture at a depths of 54 m and 108 m due to simulated infiltration. 
The dashed line represents an approximate detection limit. 
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1 Isolated Fracture 

 

3 Fractures (1.5 m average sepatation) 

 

Figure G.3 Example of fracture position and orientation averaging applied to atmospheric 
infiltration down fracture. In the first plot (top), the results for only a single 
fracture averaged over possible angles ±90° from the vertical. In the second 
plot (bottom), the same average over angle but now with 3 fractures with 
average separation of 1.5 m. 
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100 Fractures (1 m average separation) 

 

Figure G.4 Example of fracture position and orientation averaging applied to atmospheric 
infiltration down fracture with a "macroscopic" average perspective of the 
infiltration from averaging of 100 fractures separated by an average distance 
of 1 m, with random orientation.  
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