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Abstract

Coral reefs are declining worldwide due to increased incidence of climate-induced coral bleaching, which will have
widespread biodiversity and economic impacts. A simple method to measure the sub-bleaching level of heat-light stress
experienced by corals would greatly inform reef management practices by making it possible to assess the distribution of
bleaching risks among individual reef sites. Gene expression analysis based on quantitative PCR (qPCR) can be used as a
diagnostic tool to determine coral condition in situ. We evaluated the expression of 13 candidate genes during heat-light
stress in a common Caribbean coral Porites astreoides, and observed strong and consistent changes in gene expression in
two independent experiments. Furthermore, we found that the apparent return to baseline expression levels during a
recovery phase was rapid, despite visible signs of colony bleaching. We show that the response to acute heat-light stress in
P. astreoides can be monitored by measuring the difference in expression of only two genes: Hsp16 and actin. We
demonstrate that this assay discriminates between corals sampled from two field sites experiencing different temperatures.
We also show that the assay is applicable to an Indo-Pacific congener, P. lobata, and therefore could potentially be used to
diagnose acute heat-light stress on coral reefs worldwide.
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Introduction

Coral reefs are declining globally, detrimentally affecting

biodiversity and local economies [1,2,3]. Increasingly severe and

frequent episodes of elevated seawater temperature, acting

synergistically with intense solar irradiation, have led to recurrent

devastating coral bleaching events [3,4]. Coral bleaching is the

breakdown of the partnership between the cnidarian host and its

symbiotic algae (Symbiodinium spp.) [5]. While recovery is possible,

the likelihood of coral mortality increases with the duration of

stressful conditions [6]. Due to the increasing severity of bleaching

events, associated alterations in coral physiology as well as

mechanisms to mitigate their effects need to be understood.

Physiological responses to bleaching are generally examined under

controlled laboratory conditions and responses of natural popu-

lations are rarely evaluated in situ. For example, prediction of

bleaching events is currently based on physical environmental

parameters rather than coral condition in response to those
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parameters. One model employs the combination of the

temperature anomaly (HotSpot) and exposure time (Degree

Heating Weeks), typically over a 12-week period (http://

coralreefwatch-satops.noaa.gov/SBA.html). A method to rapidly

query coral stress responses in situ would make it possible to

directly evaluate how stressful the local environment is, from the

coral’s point of view. This would help ground-truth the satellite-

based systems and further refine our ability to evaluate the risk

distribution across environmental gradients as well as among

individual reefs sites. Such information would elucidate some of

the key aspects of coral ecology, and would aid in prioritizing

conservation efforts.

Recently, gene expression analysis has emerged as a powerful

tool to study the molecular mechanisms of thermal stress response

in corals. The pioneering works of Snell and co-workers identified

32 stress-regulated genes, related to protein synthesis, apoptosis,

cell signaling, metabolism, cellular defense and inflammation

[7,8,9]. This gene panel has been tested both in the lab and the

field, to detect expression changes between populations [10] and in

a single population through time [11]. More recently, studies using

larger-scale microarrays reported genes regulated during bleach-

ing in adult corals [12,13] and during heat stress in coral larvae

[14,15], revealing additional transcriptional consequences of coral

stress including cytoskeleton reorganization, change in Ca2+

homeostasis, heat shock protein expression, transposon activity,

and down-regulation of immunity components. In addition to

these ubiquitous processes, two apparently coral-specific stress

responses have been discovered: down-regulation of GFP-like

fluorescent proteins [12,16,17,18], and up-regulation of coral-

specific small cysteine-rich proteins (SCRiPs) [19].

The previous studies identified stress-induced markers that

could be diagnostic of coral stress in the field; however, they have

not provided the tools necessary to rapidly assess those markers

from multiple field-collected samples. While microarrays are useful

for capturing the full range of expression changes induced by a

particular environmental stressor, they are not feasible as tools for

field applications. A practical diagnostic assay should be based on

a minimal number of genes and the least complicated laboratory

procedures, as long as they ensure powerful and accurate stress

detection. Quantitative PCR (qPCR) can fill the gap between our

knowledge of system-wide gene expression patterns in response to

stress and the ability to assess the response of multiple individuals

rapidly and cost-effectively. Since qPCR assays do not rely on

variable and difficult to obtain detection reagents such as

polyclonal antibodies, they are more tractable than previously

described protein-based techniques [20,21], resulting in easy

replication across laboratories and therefore facilitating their

broad practical application. While any molecular assay for stress

detection ultimately requires validation through correlated phys-

iological changes and extensive evaluation in the field, it is our

opinion that the current challenge for implementing expression-

based methods lies in identifying the genes demonstrating the most

pronounced and consistent stress response, preferably with a large

dynamic range to enable quantification.

A few recent studies question the potential for making

meaningful comparisons within and between individual corals

based on expression data. Bay et al. [18] found few expression

differences between populations from different source environ-

ments. The authors conclude this was most likely due not to the

absence of differences, but to high variance in expression levels

among coral colonies within each source population [18]. Seneca

et al. [22] also observed high inter-individual variation in A.

millepora in the field, although significant bleaching-related

responses in some genes have been detected. Moreover, variability

of stress-related gene expression was observed not only between

individuals, but also between clonal fragments obtained from the

same individual in laboratory experiments with A. millepora [23].

Based on the work of [22,23]. Souter et al. [24] designed a

multilocus expression assay for thermal stress in A. millepora. The

results were similar: due to high variation, only two genes

exhibited significantly different expression. In a Caribbean

congener, however, significant expression differences under

thermal stress were detected for 11% of the candidate genes

queried [13]. In an evaluation of thermal stress in Montastraea

faveolata, another Caribbean species, DeSalvo et al. [12] report

significant expression differences for 21% of their candidate genes

during their sampling time course. However, in a second time

course experiment published later using the same species and

microarray, only 4–6% of genes were differentially expressed [25].

While these studies have detected significant expression changes

under thermal stress, the results are largely inconsistent, both

within and between species. This suggests that robust stress

detection based on gene expression may not be achievable, at least

in these systems.

The main goal of this study was to further explore the potential

of a number of genes highlighted by previous works to serve as

components of a qPCR-based stress detection and quantification

assay. Rather than focusing on a single coral species, we sought to

develop an assay that would be broadly applicable to an

ecologically important group of corals worldwide, and thus could

become a universal indicator of reef stress. We chose to focus on

the genus Porites, as it is the second most speciose coral genus (after

Acropora), contributing greatly to reef structure all over the world

[26]. Importantly, in contrast to Acropora, commonly found species

of the genus Porites are not considered critically endangered,

therefore their sampling as bioindicators would be possible. While

Porites spp. are not as susceptible as other genera to heat-light

stress-induced mortality [27,28], we show that their gene

expression patterns are responsive to stress, rendering them a

consistent and reliable indicator.

Methods

Ethics Statement
Fieldwork in the USA was carried out under permits FKNMS-

2009-078 (Experiment 1 and 3), FKNMS-2010-093 (Experiment

2) issued by the Florida Keys National Marine Sanctuary.

Fieldwork in Australia was carried out under permit G28854.1

(Experiment 4) issued by the Great Barrier Reef Marine Park

Authority and samples were exported to the USA under CITES

permit No. 2008-AU-537170.

Stress Experiments
Experiment 1: Heat-Light Stress Expression Patterns. In

July 2009, four whole colonies of Porites astreoides were obtained from

the Florida Keys National Marine Sanctuary nursery in Key West at

10:00 (depth: 2.7 m), and one was also collected from a seawall at the

east end of old Bahia Honda Bridge at 15:00 (1 m, 24.655u N,

81.298u W). Water temperatures at the time of sampling were not

recorded. Colonies were immediately transported to Mote Tropical

Research Lab and allowed to acclimate in a shaded flow-through

system supplied with sand-filtered seawater for two days (mean

temperature: 27.860.7uC). The flow-through system was supplied

with additional circulation provided by two submerged pumps.

Following the two-day acclimation, colonies were halved. One half

was returned to the shaded (control) system, while the other half was

placed in a full sun-exposed (treatment) system. Colonies were

sampled for gene expression analysis on the fourth day at midday

Gene Expression Markers of Acute Heat-Light Stress
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(14:00). StowAway TidbiT temperature data loggers (Onset

Computer Corp., Bourne, MA) recorded ambient temperature

every two minutes for the duration of the experiment (Fig. S1). Reefs

in the Florida Keys annually experience summer maxima of 32uC,

and occasionally nearshore sites can reach temperatures in excess of

33uC, which results in annual bleaching. Treatment conditions were

deliberately chosen to exceed this natural intensity (two days under

large daily temperature variation, reaching 35–36uC at solar

maximum, dropping to 28uC at night), under the assumption that

any genes failing to show expression change under such extreme

conditions are probably poor candidates for stress diagnostics in situ.

Light intensities were recorded above-water at the time of sampling

using the photosynthetic photon flux quantum meter (Spectrum

Technologies, Inc., Plainfield, IL), and were found to be 19 mmol-

m22-s21 in the control table and 1960 mmol-m22-s21 in the

treatment system.

Experiment 2: Stress-Recovery Expression Patterns. This

experiment was intended to clarify whether the genes regulated in the

first experiment responded to the acute stress condition, or reflected

cumulative stress over two days of exposure. In August 2010, eight

whole colonies of P. astreoides at a depth of 1.8 to 3.3 m were collected

at 14:00 from an offshore patch reef (24u 31.3039 N, 81u 34.6059 W).

Water temperature at the time of sampling was 30.1uC. Colonies

were immediately transported to Mote Tropical Research Lab and

placed in a shaded flow-through system supplied with sand-filtered

seawater (mean temperature: 28.060.7uC). On the same day,

colonies were quartered using a hammer and chisel, after which all

fragments were returned to the shaded flow-through system and

allowed to acclimate for four days. The photochemical efficiency of

the symbionts was quantified using a pulse amplitude modulated

fluorometer (PAM). PAM measurements revealed that the quantum

yield of PSII / WPSII of in hospite Symbiodinium of P. astreoides may have

been slightly diminished at the initial sampling/quartering point, but

recovered overnight and remained stable throughout the acclimation

period (Fig S2). At 09:00 on the fourth day of acclimation, two

fragments from each colony were moved to a fully sun-exposed flow-

through system. At midday (14:30, ‘‘stress’’ time-point) samples were

taken from two fragments per colony, one from the control and one

from the treatment system, and immediately processed for gene

expression analysis (see Sampling Procedures). At 21:00, when the water

temperatures of the two flow-through systems became equivalent,

PAM measurements were taken of the remaining un-sampled

fragments and the un-sampled fragment from the sun-exposed

system was returned to the shaded system. On the following day at

14:45 (‘‘recovery’’ time-point), the remaining two fragments (one

heat-light stressed 24 hours earlier and one control) from each colony

were sampled and immediately processed for gene expression

analysis. Prior to sampling, levels of bleaching were assessed using a

color card [29]. The temperature and light in the shaded and exposed

systems at midday were similar to those in stress experiment (1), with

the temperature difference between treatments reaching 7–8uC and

light levels of approximately 20 and 2000 mmol-m22-s21 for control

and stress treatments, respectively as measured with the

photosynthetic photon flux quantum meter (Spectrum

Technologies, Inc., Plainfield, IL) (Fig. S3).

Experiment 3: Field validation of double-gene assay. Since

stress experiments (1) and (2) were lab-based manipulations, we

wanted to test the applicability of the double-gene assay (see Results) on

field-collected individuals. In July 2009, tissue samples of P. astreoides

from both an inshore (24u36.296 N, 81u22.745 W; depth: 3.5m;

N = 9) and an offshore (24u33.196 N, 81u22.747 W; depth: 4.5m;

N = 7) reef were collected (see Sampling Procedures). Temperatures at

both field sites were measured using StowAway TidbiT temperature

loggers (Onset Computer Corp., Bourne, MA) with recordings taken

every two minutes. Light measurements are unavailable for this

experiment, although in a visual assessment at the time of sampling,

the inshore site was more turbid than the offshore site.

Experiment 4: Transferability of double-gene assay

between species. In order to evaluate the among-species

applicability of the actin-Hsp16 double-gene assay (see Results),

we used material initially collected in December 2008 from earlier

experiments with Porites lobata from the Great Barrier Reef. Large

fragments of five colonies of P. lobata were collected from Pioneer

bay, Orpheus Island, Australia (18u35.6939S, 146u29.2479E). They

were acclimated in indoor tanks supplied with flow-through

filtered seawater (28uC) for four days, with metal halide lamps

providing the light (,200–250 mmol-m22-s21) with 12h light/

dark cycle. On the fifth day, each large fragment was further

divided and three small fragments were placed into each of three

treatment tanks (supplied with water at 31uC), while three other

small fragments were placed into three control tanks (28uC). The

lighting in both the elevated and control temperature tanks was

the same as during the acclimation period. After nine days of this

treatment, the fragments were sampled for gene expression

analysis. Some fragments failed to yield qPCR measurements for

a variety of non-biological reasons, resulting in 1–3 replicates per

colony per treatment for four colonies, with the fifth colony

represented by two control replicates.

Candidate and Internal Control Gene Selection
Candidate genes were selected for analysis based on differential

expression in response to heat stress, copper poisoning, and/or

mechanical injury in P. lobata and P. compressa (Matz, unpublished;

the data are available at http://www.bio.utexas.edu/research/

matz_lab/matzlab/Data.html). The selected genes also reflect

several biological processes shown to be involved in stress response

across scleractinians [12,13,14,15]. Nine of our candidate gene

primer pairs were originally designed using P. lobata and P.

compressa sequence data. The remaining primer pairs were

designed using P. astreoides sequence data obtained from the

SymBioSys database (http://sequoia.ucmerced.edu/SymBioSys/

index.php) (Table 1).

Five putative internal control genes were derived from a series

RNA-seq experiments conducted on larval families of Acropora

millepora [27], as being the most stable during long and short--term

heat stresses, settlement induction, and metamorphosis. This

selection included typical control genes reported for other models:

ribosomal protein L11 (RPL11), elongation initiation factor 3H

(EIF3H), NADH-dehydrogenase subunit 5 (ND5), glucose-3-

phosphate-dehydrogenase (G3PDH), and GTP-binding protein

responsible for nuclear organization maintenance (GSP2).

Primer Design and Validation
Primers were designed using Primer3 (http://primer3.source-

forge.net/). The specificity of each primer pair was verified by gel

electrophoresis and melting curve analysis of the amplification

product obtained with P. astreoides cDNA as a template. Primer

efficiencies were determined by amplifying a series of 2-fold

dilutions of P. astreoides cDNA covering two orders of magnitude of

template amount (5 ng to 0.078 ng RNA-equivalent per PCR

reaction). The results were plotted as CP vs. log2[cDNA], and the

primer-specific amplification efficiency E (the amplification factor

per PCR cycle) was derived from the slope of the regression using

formula E = 22(1/slope) [30]. Primer pairs with E outside 1.85–2.15

range were redesigned and re-validated. In order to verify primer

specificity for coral cDNA, all primer pairs were tested on cDNA

from cultured Symbiodinium strain B184. No amplification was

observed except in the positive control (Symbiodinium-specific

Gene Expression Markers of Acute Heat-Light Stress
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Hsp70 primers, [31]). The full gene list and primer sequences are

given in Table 1.

Sampling procedures
Porites spp. fragments were dabbed with a kimwipe to remove

excess seawater. Samples were then taken by scraping off

approximately 1 cm2 of tissue from the colony surface with a

razor blade. In Experiment 1 and 3, samples were taken and

immediately placed into a microcentrifuge tube containing 2 ml of

96% ethanol on ice and stored at 220uC. In Experiment 2, the

fragments were carried to the lab in a bucket of their respective

system water, sampled as described above and immediately

processed for RNA isolation. In Experiment 4, the sampled tissue

was put into .5 volumes of RNAlater (Ambion) and kept at 0 to

220uC until RNA isolation. A test of all the employed methods of

preservation demonstrated that the resulting RNA quality was

equivalent to that obtained from freshly extracted material or

material snap-frozen in liquid nitrogen. RNA integrity number

(RIN) measured on a Bioanalyzer (Agilent) was 8 or higher for all

samples, regardless of preservation treatment (Fig. S4).

RNA isolation and cDNA synthesis
Total RNA was extracted using RNAqueous 4-PCR kit

(Ambion). Samples stored in preservative were removed from

their tubes and residual liquid was dabbed off using a kimwipe.

Each sample was placed in a 25 mm petri dish containing 350 ml

Lysis Buffer from the kit and homogenized using a razor blade.

Slurries were then transferred to sterile 1.5 ml tubes, an additional

350 ml Lysis Buffer was added and back-pipetted to completely

disperse tissue. Samples were then spun for 5 minutes at 5000 rpm

in a table centrifuge to precipitate skeleton fragments and other

insoluble debris. 700 ml of supernatant was used for extraction

following the manufacturers’ instructions, with one modification:

in the final elution step, the same 25 ml of elution buffer was passed

twice through the spin column to maximize the concentration of

eluted RNA.

RNA quality was assessed through gel electrophoresis and

evaluated based on the presence of the ribosomal RNA bands. If

the rRNA bands were poorly visible, the samples were discarded

and not included in the analysis (Fig. S5). Total RNA was DNAse

treated according to the RNAqueous 4-PCR kit protocol, after

Table 1. List of candidate genes used in expression analyses.

Gene Name (Abbreviation) Biological Process
Forward Primer
Reverse Primer

Sequence
Information

18s rRNA Metabolism F: 59-AATGATCTATCCCCAGCACG-39

R: 59-TCCAACCAAAGTCAGGAAGG-39

P. lobata

Alpha B Crystallin
(HSP 16)

Heat-shock F: 59-TCACAGGAAAACACAGAGCG-39 R: 59-
GGGTCACGTGCCACTTCTAT-39

P. lobata

Actin Cytoskeleton F: 59-CAGTGTTTCCCTCCATCGTT-39 R: 59-
CAGTTGGTTACAATGCCGTG-39

P. lobata

Adenosine Kinase (ADK) Metabolism F: 59-AAAGAACCCACTGGAACGTG-39 R: 59-
CAAATGCCCAGTTTTCTGGT-39

P. lobata

Complement Component C3 (C3) Immunity F: 59-TGTGGCACTACAGGCTCTTG-39 R: 59-
GACATCAATCGCTCTGCGTA-39

P. lobata

C-type Lectin (Clect) Immunity F: 59-CCCGGTGATACTGTGTCAGA-39

F: 59-AAATGCCAACCCAAGTAACG-39

P. astreoides

Eukaryotic Initiation Factor 3, Subunit H (EIF3H) Control gene F: 59-TTGATTGATACCAGCCCACA-39

R: 59-ACAAACTGCTTTGCTTTCCC-39

P. astreoides

Glyceraldehyde-3-Phosphate Dehydrogenase (G3PDH) Metabolism F: 59-TCCATGGACTTCGTTCACAA-39

R: 59-CAGAAGATCCACCACCCTGT-39

P. astreoides

GFP-like Chromoprotein (Chrom) Unknown F: 59-AGGTGCCACCGTATCACTTC-39 R: 59-
CACTATTGCCTTTTCGCCAT-39

P. lobata

GTP Binding Protein (GSP2) Control gene F: 59-GACCAGGAAAGAACGTCCAA-39

R: 59-GGAAAACCGCCATACTCAAA-39

P. astreoides

HSP 60 Heat-shock F: 59-CCAGCAGCGGTTTTCTCTTA-39

R: 59-CGGCAACAGCATCAGTTAAA-39

P. astreoides

HSP 90 Heat-shock F: 59-GTTGGGTCGGTCAAACTCTC-39

R: 59-GAGCATCCGAAGAGTTGGAG-39

P. astreoides

NADH-Dehydrogenase (ND5) Control gene F: 59-AGCATGAATAACAGACCCCG-39 R: 59-
TTGGGGTGGTTCAAAATGAT-39

P. lobata

60s Ribosomal Protein L11 (Rpl11) Control gene F: 59-TTTCAAGCCCTTCTCCAAGA-39

R: 59-GACCCGTGCTGCTAAAGTTC-39

P. astreoides

Spondin 2 (Spon2) Immunity F: 59-CACGAGCACAAAAATCATGG-39

R: 59-GCAGGTCCATTGTCACCTTT-39

P. astreoides

Trans-golgi Network Protein (Tgoln) Vesicular Protein Transport F: 59-GCTGCCTTTTTCTTGACTGC-39 R: 59-
TCCTGTAGCCTCGCCTTCTA-39

P. lobata

Ubiquitin-like protein 3 (Ubl3) Protein Degradation F: 59-ATGGACTTTTGACCCTCACG-39

R: 59-ATGGTCGGTTTCTACATGGC-39

P. lobata

Sequence information column indicates database where information was obtained. P. lobata information can be found at http://www.bio.utexas.edu/research/
matz_lab/matzlab/Data.html. P. astreoides information can be found at http://sequoia.ucmerced.edu/SymBioSys/index.php.
doi:10.1371/journal.pone.0026914.t001
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which the concentration of RNA was estimated using the

Nanodrop 2000 (Thermo-Fisher). For each sample, first strand

cDNA was prepared from the amount of total RNA equivalent to

50 ng, using the SmartScribe Reverse Transcriptase kit (Clontech-

Takara, Mountain View, CA) and an oligo-dT-containing primer

(59-CGCAGTCGGTACTTTTTTCTTTTTTV-39). The reac-

tion was then diluted to contain an equivalent of 1 ng/ml of

RNA. An aliquot of first strand cDNA equivalent to 1 ng RNA

(i.e. 1 ml) was used for each qPCR reaction.

qPCR and normalization
qPCR reactions were performed in 15 ml volumes using 2x

SYBRgreen Master Mix (Roche) in the LightCycler 480 (Roche).

Preliminary analyses (CP calling and melting curve analysis) were

performed using the GeneScan software (Roche) supplied with the

instrument. Each cDNA sample was assayed in duplicate, in

independent qPCR runs. The CP values were then converted to

values proportional to absolute amounts following [32], using the

gene-specific amplification efficiencies (E) as the base of the

exponent. These values were then log2-transformed to yield Ca

values, suitable for linear model analysis (Fig S6). The cumulative

formula for these transformations is Ca = - CP * log2(E) (see

Supplementary file for derivation). The gene-specific amplification

efficiencies (E) were derived from analysis of serial dilutions, as

explained in the Primer Design and Validation section above. The

arithmetic mean of the control genes’ Ca values was subtracted

from the Ca values of other genes, to yield normalized Ca values.

This procedure is mathematically identical to the one suggested by

Vandesompele et al. [33] in application to the log-transformed

absolute amounts, represented by the Ca values. The normalized

Ca values were then used for statistical analysis.

Statistical Analysis
All analyses were carried out using R software [34]. The effects

of heat-light stress on candidate gene expression were investigated

with a series of linear mixed models using the lme4 package [35].

For Experiments 1 and 2, each gene was analyzed individually

using the normalized Ca value as the response variable. For

Experiments 3 and 4, the response variable (D) was the difference

between Ca values of actin and Hsp16 (D = CaHsp16 – CaActin).

For Experiment 1, the effect of heat-light stress was modeled with

treatment (control or heat-light stress) as a fixed factor and individual

colony as a random factor. For the analysis of Experiment 4, which

included replicate samples per colony in replicate tanks, tank effect

was included as an additional random factor. For Experiment 2, the

effect of heat-light stress was modeled with treatment history (control

or treatment) and sampling point (stress or recovery) as fixed factors

and individual colony as a random factor.

The nominal P-values for the significance of fixed factors were

derived via Markov Chain Monte Carlo (MCMC) simulations

using the functions mcmcsamp and HPDinterval of the lme4 package.

The false discovery rate [36] was controlled at the 5% level using

function p.adjust in R.

Potential heat-light stress diagnostic genes were identified using

principal components analysis (PCA) on only those genes that were

common to the ‘‘stress’’ and ‘‘stress-recovery’’ experiments (actin,

ADK, C3, Chrom, Hsp16 and Ubl3). PCA was performed using

labdsv package [37].

Results

Verification of internal control genes
To verify the stability of the five putative control genes in the

experiments described here, these genes were quantified by qPCR

in the actual ‘‘stress’’ (experiment 1) and ‘‘stress-recovery’’

(experiment 2) samples of P. astreoides, and ranked by stability

using geNorm [33]. The average gene stability values (M) of the

three most stable genes (RPL11, EIF3H and ND5, Table 1) were

1.22, 1.22, and 1.42, respectively; somewhat higher than typical

[32]. To see if this would present a problem, we normalized the

control gene data using all five genes as controls and looked at the

residual variation. This analysis suggested that the three most

stable genes were regulated across experimental conditions by

1.19–1.29 fold, while fluctuating within a given condition by 1.82–

1.99 fold. While this variation is clearly non-zero (i.e., the control

genes were not perfectly stable), it is notably less than the target

gene expression responses that we report here (see below). We

therefore deemed the selected three internal control genes suitable

for our particular study, given the magnitude of gene expression

regulation that we claim to have detected.

Heat-light stress expression patterns (Experiment 1)
Of the eight genes tested in this experiment, four demonstrated

significant expression changes: Hsp16 was dramatically (,800-

fold) up-regulated (P,0.001, Fig 1A). In addition, a GFP-like

chromoprotein demonstrated up-regulation under stress (,2-fold,

P,0.01, Fig 1D), while both actin and complement component

C3 were down-regulated by ,4-fold and ,6-fold, respectively

(P,0.01, Fig 1B,C). The heat-light stressed coral fragments did

not show observable signs of bleaching after this treatment

compared to controls, although the photosynthetic parameters

were not monitored in this experiment.

Stress-recovery expression patterns (Experiment 2)
The expression patterns of both Hsp16 and actin at the ‘‘stress’’

time point recapitulated the results of Experiment 1: Hsp16

was strongly up-regulated (,700-fold, PMCMC,0.001, Fig 2A

‘‘stress’’), while actin was down-regulated (,4-fold, PMCMC,0.01,

Fig 2B ‘‘stress’’). Complement component C3 also showed a slight

trend towards down-regulation (Fig 2C ‘‘stress’’). The GFP-like

chromoprotein, in contrast to Experiment 1, showed no apparent

trend. In addition, genes for two large heat-shock proteins (Hsp60

and Hsp90) that we included into our gene panel for the stress-

recovery experiment were also up-regulated during the ‘‘stress’’

time point, Hsp60 by ,4-fold, and Hsp90 by ,6-fold

(PMCMC,0.001, Fig. 2D,E ‘‘stress’’).

Stressed fragments were visibly bleached relative to their

respective controls, and photosynthesis of their symbionts was still

inhibited relative to their paired controls as the recovery period

progressed (Fig. 3). Despite visible signs of bleaching, gene

expression at the ‘‘recovery’’ time point was not significantly

different between the control and heat-stressed fragments (Fig 2B–

E ‘‘recovery’’), with the exception of Hsp16, which was still up-

regulated by ,8-fold (PMCMC,0.01, Fig. 2A ‘‘recovery’’).

Significant treatment x time interactions for the heat-treated

fragments between the ‘‘stress’’ and ‘‘recovery’’ time-points reflect

this recovery of baseline gene expression patterns (Fig 2A–E).

Double-gene assay for heat-light stress (Experiments 3
and 4)

After observing the remarkably consistent expression patterns

obtained for Hsp16 and actin under heat-light stress during both

years of our experiment, we decided to explore the potential to

diagnose heat-light stressed colonies based on expression of a few

key genes. In a principal components analysis of our first two

experiments (1 and 2), 69% of the variance in our data was

explained by the first two components, 42% by PC1 alone.

Gene Expression Markers of Acute Heat-Light Stress
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Furthermore, heat-light treated fragments were fully distinguish-

able from controls (Fig 4). For PC1, we found Hsp16 to be the

strongest positive loading and actin to be the strongest negative

loading, at 0.55 and -0.56 respectively.

Since the expression changes of the two most responsive genes

(actin and Hsp16) were inversely correlated, we designed a

diagnostic assay based on the magnitude of difference between

their expression levels. The difference between the non-normalized

Ca’s of actin and Hsp16, which we designated the ‘‘Porites Stress

Index’’ (PSI), clearly distinguished between stress and control

samples in our lab-based experiments with P. astreoides (Fig. 5A,B).

We also demonstrate successful transfer of this assay across species.

Stressed corals were differentiated from controls in a lab-based

experiment performed using an Indo-Pacific Porites species, P. lobata.

The actin-Hsp16 Ca difference changed significantly (Fig. 5C),

although not as dramatically as in experiments with P. astreoides. This

reduced response is likely due to the fact that the control fragments

were also stressed as all fragments were visibly paler at the end of

experiment compared to the time of collection (data not shown).

Finally, we show that the PSI is able to discriminate between

field populations experiencing different temperatures (Fig. 5D). At

the time of field collections, water temperature of the inshore site

was 32.2uC, while the offshore site was 31.5uC and mean

temperatures for the three days surrounding sample collection

were 32.1uC (60.56uC) at the inshore site and 30.9uC (60.44uC)

at the offshore site. Consistent with this temperature difference,

colonies of P. astreoides from the inshore site demonstrated a

significantly higher PSI than those from the offshore site

(P = 0.002, Fig. 5D). It is interesting to note that ambient light

level at the turbid inshore site was less than at the offshore site,

suggesting that temperature was the primary driver of the

observed difference, if PSI is actually reflective of stress.

Discussion

Candidate genes and expression patterns
Over the past decade, sequence information has become

available for over a half-dozen coral species comprising three of

Figure 1. Significant gene expression differences by treatment
for Experiment 1 (Porites astreoides). Box-plots show distribution of
normalized expression values for all individuals (n = 5 pairs) by
treatment. A thick black line indicates the median of normalized
expression values. The box represents the inter-quartile range (IQR)
between the upper and lower quartile. The whiskers maximally extend
1.5 times beyond the IQR. Open circles indicate outliers. The black
circles within each box are predicted values for the condition based on
the linear-mixed model results. Lines connecting dots represent the
effect of heat-light treatment, given as B at the top of each figure. Effect
significances, after applying a multiple-test correction, are represented
by (*) = P,0.05, (**) = P,0.01, (***) = P,0.001. Gene abbreviations: C3 =
complement component C3, Chrom = GFP-like chromoprotein.
doi:10.1371/journal.pone.0026914.g001 Figure 2. Significant gene expression differences by treatment

and/or time in Experiment 2 (Porites astreoides). Box-plots show
distribution of normalized expression values for all samples (n = 12
pairs). A thick black line indicates the median of normalized expression
values. The box represents the inter-quartile range (IQR) between the
upper and lower quartile. The whiskers maximally extend 1.5 times
beyond the IQR. Open circles indicate outliers. The black circles within
each box are predicted values for the condition based on the linear-
mixed model results. Lines connecting dots represent significant effects
of either time (between stress and recovery) or treatment (between
heat and control), given as B next to each line. Effect significances,
determined by MCMC simulations, are represented by (*) = P,0.05,
(**) = P,0.01, (***) = P,0.001. Gene abbreviations: C3 = complement
component C3.
doi:10.1371/journal.pone.0026914.g002
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the most common reef-building genera (http://sequoia.ucmerced.

edu/SymBioSys/index.php, http://www.bio.utexas.edu/research/

matz_lab/matzlab/Data.html). Furthermore, a substantial body of

literature has identified common patterns of gene expression

regulation under stress conditions ranging from environmental

pollutants [7,8,9,10,11] to thermal stress [12,13,14,15]. Our results

corroborate these findings and add a new super-responsive gene to

the heat-shock panel, Hsp16. Previous studies have relied on larger

heat shock proteins, such as Hsp60, 70 and 90, that display levels of

up-regulation under heat stress on the order of 1 to 10-fold

[12,13,14,23]. We report similar levels of up-regulation for these

large Hsps. However, when evaluating the expression of Hsp16, we

observe a reproducible pattern of ,800-fold up-regulation in heat-

light stressed P. astreoides fragments relative to their paired controls.

Hsp16 is a cytosolic chaperone [38] that is highly sensitive to

temperature-induced structural changes and is known to be

involved in preventing protein aggregation [39]. In Drosophila, it

has been shown that small to moderate increases in Hsp70

increase the thermotolerance response, while large increases

reduce it, meaning that too much Hsp70 is detrimental to overall

thermotolerance [40]. Therefore, the lack of extreme up-

regulation in the large Hsps actually renders them rather poor

markers of thermal stress events, despite being effective heat shock

proteins. Hsp16 may be less damaging in high doses, or only

induced during stress, which would explain the extreme up-

regulation and subsequently rapid down-regulation when the

event is over. To further evaluate its promising potential as a

biomarker, we plan to explore whether the level of up-regulation

of Hsp16 is proportional to the intensity of stress event, as well as

the type of stressors that induce it.

Down-regulation of actin was our second most reproducible

pattern over the two replicated Experiments (1) and (2). Consistent

with DeSalvo et al. [12], we hypothesize that this expression

pattern may be attributable to cytoskeletal changes in response to

heat-light stress. Actin is an important cytoskeletal component

involved in cell motility, growth and division [41]. Both

microtubules and actin microfilaments have been shown to de-

polymerize in response to heat shock in Arabidopsis thaliana [42],

consistent with this hypothesis of cytoskeletal disruption in

response to thermal stress. Conversely, the expression of a major

cytoskeletal protein, such as actin, may be a proxy of the growth

rate, in which case actin down-regulation could be indicative of

overall growth inhibition in response to stress. This hypothesis can

be tested in the future by correlating the actin expression in corals

with DNA/RNA ratio, an accepted proxy of growth in other

marine organisms [43], as well as directly by concurrent

measurements of actin expression and growth in the lab under

various conditions. While our data are consistent with the

Figure 3. Chlorophyll a fluorescence, effective quantum yield (WPSII), of in hospite Symbiodinium during the Stress-Recovery
experiment. Mean 6 standard deviation of both effective quantum yield and light measurements taken for each fragment of Porites astreoides in
the control, heat-light stressed and recovery treatments (n = 15) in flow-through systems supplied with sand-filtered sea water.
doi:10.1371/journal.pone.0026914.g003

Figure 4. Principal components analysis of stress response
gene expression in Porites astreoides. Black circles represent heat-
light treated samples (n = 13), white circles represent control samples
(n = 13). Vectors indicate loadings for each gene. The two major
loadings on PC1 are Hsp16 (0.55) and actin (-0.56). Abbreviations are as
follows: C3 = complement component C3; ADK = adenosine kinase;
Ubl3 = Ubiquitin-like protein 3; Chrom = GFP-like chromoprotein.
doi:10.1371/journal.pone.0026914.g004
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hypothesis of cytoskeletal re-organization in response to thermal/

light stress, much work is still needed to understand the nature and

the implications of this complex process.

Complement component C3 is an important factor in the innate

immune response, whereby foreign cells are recognized, engulfed

and destroyed [44]. We found significant down-regulation of C3 in

response to heat-light stress in Experiment (1), and a trend towards

down-regulation in the stress time-point of Experiment (2). The

down-regulation of immunity as a result of thermal stress is an

expected trade-off due to re-allocation of resources to counter

immediate stress effects [45]. Rodriguez-Lanetty et al. [14]

reported down-regulation of another putative immunity-related

gene, a mannose-binding lectin, in A. millepora larvae exposed to

thermal stress. The observation that coral disease events tend to

follow thermal stress events, as has been reported in the Great

Barrier Reef [46] and Caribbean, e.g. [47], may therefore be

attributable to this down-regulation of immunity [14,48], although

some recent studies argue against such a scenario [49,50].

We also observed significant up-regulation of a GFP-like

chromoprotein as a result of heat-light stress in Experiment (1).

Differential regulation of chromoproteins under heat stress is an

increasingly common finding, though there are more reports of

down-regulation [12,16,17,18] than up-regulation [22]. Converse-

ly, high light and ultraviolet radiation have been shown to result in

up-regulation of GFP-like proteins in reef-building corals [51,52].

Observation of up-regulation under heat-light stress could be due

to the fact that GFP-like proteins have been hypothesized to

participate in an oxidative stress response based on the superoxide-

quenching properties of the jellyfish-derived GFP [53]. Also,

Palmer et al. [54] have argued that GFP-like proteins may

contribute to oxidative stress response through hydrogen peroxide

scavenging. An alternative explanation of up-regulation of the

GFP-like proteins could be their suggested role in photoprotection

[55,56] or otherwise modulating [57,58] the photosynthesis of

algal symbionts. Though this potential role remains controversial

for a variety of reasons [59,60,61], the sheer prominence of GFP-

like proteins in terms of expression level [62,63] along with their

clear propensity to respond to changing environmental conditions

suggest that they may be important ecological indicators, and call

for further investigation into their biological function.

Recovery from heat-light stress
While extensive work has gone into characterizing gene

expression patterns of scleractinians during immediate thermal

stress events, to our knowledge, only one other study [13] has

presented data on modulation of heat-light stress gene expression

during a recovery phase in adult Montastraea faveolata. Contrary to

our current results, DeSalvo et al. [13] reported minimal

differences in gene expression patterns between stressed and

recovered corals; though it is possible that the expression changes

due to treatment were dampened because the magnitude of

experimental stress was less than in the experiments reported here.

In our stress-recovery experiment, for all genes showing

differential regulation under immediate stress, the expression

difference between stressed and recovered fragments was also

significant in an apparently rapid recovery of homeostasis. For

those fragments experiencing extreme thermal stress only twenty-

four hours earlier, gene expression patterns between control and

heat-light treated fragments were almost indistinguishable,, with

moderate up-regulation of Hsp16 remaining as the only signature

of the prior exposure. Comprehensive gene expression studies in

yeast, which are also unable to thermo-regulate, have revealed that

expression changes in response to many types of environmental

stress are large, proportional to the intensity of the stress

experienced and are transient [64]. Our expression data clearly

recapitulate this pattern. Taken together with the Experiment (1)

stress expression data, this suggests that our gene panel reflects

acute rather than chronic stress, as the full magnitude of Hsp16

and actin regulation were observed on the first day of exposure

during the stress-recovery experiment.

The rapid recovery of the ‘‘normal’’ gene expression levels

observed in our experiment is also remarkable considering the fact

that the recovering fragments were visibly bleached and the

photosynthetic ability of their algal symbionts was still inhibited

(Fig. 3). This indicates a possible discrepancy between the

physiological states of the coral host and its symbionts, and

suggests that the measures of coral stress relying only on symbiont

parameters (such as degree of bleaching and photosynthetic

efficiency) may not be fully informative for assessment of the

holobiont’s potential to survive stress.

Double gene assay
The difference between expression levels of Hsp16 and actin

(‘‘Porites Stress Index’’, PSI) emerged as a powerful indicator of

acute heat-light stress, combining the dynamic ranges of the anti-

correlated responses of these two genes (Fig. 5). The major

advantage of such an assay is that there is no need for

amplification and analysis of additional internal control (‘‘house-

Figure 5. Application of double-gene assay to evaluate stress in Porites astreoides and P. lobata. In all panels, the vertical axis gives the
difference between Ca values of Hsp16 and actin for (A) heat-light stressed and control P. astreoides (n = 15 pairs); (B) recovered and control P.
astreoides (n = 15 pairs); (C) heat stressed and control P. lobata (n = 5 pairs) and (D) inshore (n = 9) and offshore (n = 7) P. astreoides. The text above the
plots denotes the magnitude of change (b) according to the linear mixed model, and the significance of treatment (P). A thick black line indicates the
median of the Ca difference values. The box represents the inter-quartile range (IQR) between the upper and lower quartile. The whiskers maximally
extend 1.5 times beyond the IQR.
doi:10.1371/journal.pone.0026914.g005
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keeping’’) genes. Normalization is typically necessary because the

measured abundance (Ca) of any gene is affected by template

loading discrepancies between samples [65] in addition to variation

due to gene regulation. Since two genes amplified from the same

sample share the same template loading factor, it cancels out when

the difference between their Ca values is computed, leaving only the

biologically relevant variation [66]. The difference between the Ca

values of actin and Hsp16 is negative for the non-stressed corals and

approaches 0 or even becomes positive for stressed corals (Fig. 5).

While the efficacy of this method over a broad range and intensity of

stressors is still unclear, we believe it might present a minimally

invasive means of rapidly evaluating coral stress in situ. Importantly,

the assay is applicable to at least two species of Porites, an important

reef-builder with a global distribution, and shows a between-

population difference that is consistent with the observed temper-

ature difference in the field. Future field studies will investigate the

connection between physical characteristics of the environment and

PSI. From the applied perspective, arguably the most important

challenge is to understand how PSI measurements translate into

bleaching, disease, and general mortality risks, for Porites spp. and

for other corals growing on the same reef. If such connections are

established, PSI could become a unique tool, facilitating environ-

mental assessment from the point of view of the keystone organism,

the coral itself.

Supporting Information

Figure S1 Temperature profile (6C) of Experiment 1.

Blue line: shaded control system, red line: sun-exposed system.

Colony fragments were placed into the treatment flow-through

system on Day 1. The vertical line marks the time of sampling.

(TIF)

Figure S2 Chlorophyll a fluorescence, effective quan-
tum yield (WPSII), of in hospite Symbiodinium during
acclimation in Experiment 2. Mean 6 standard deviation of

both effective quantum yield and light measurements taken for

each Porites astreoides (n = 15) in the control flow-through system.

(TIF)

Figure S3 Temperature (6C) and light (Log10Lumens)
profile of Experiment 2. Stress samples were taken at 14:30 on

8/16. Recovery samples were taken at 14:45 on 8/17.

(TIF)

Figure S4 Evaluation of RNA quality among different
preservation methods. Duplicate samples from a single colony

of Porites astreoides were fixed in either 96% ethanol (E), RNAlater

(R), or snap-frozen in liquid nitrogen (Ln) and stored at 220uC for

five days. The various preservatives were also compared to RNA

extracted from non-fixed tissue (F). RNA was run on a 1%

Agarose gel at 160 V for 25 minutes and illuminated under UV

light. An additional aliquot was also run on a Bioanalyzer (Agilent)

and the resulting RNA integrity (RIN) values are reported for each

sample.

(TIF)

Figure S5 Lonza Gel of RNA from samples used in
experiment 2 (Stress-Recovery). RNA (orange bands) is from

samples at the stress time point. DNA appears as yellow bands. It

is important to note that 3 ml of sample was loaded, regardless of

concentration, therefore some samples appear brighter due to

higher RNA amount. Rows with the same number indicate two

fragments from the same colony exposed to either heat (H) or

control (C) conditions. Empty wells and 2-log ladder are indicated

by (B) and (L), respectively. A star above a sample indicates

sufficient rRNA band quality for use in downstream reactions.

(TIF)

Figure S6 Standard Q-Q plots of residuals from gene-
wise linear mixed models on Experiment 2 data.
Quantiles of the residuals from our most sample-rich experiment

(Experiment 2, ‘‘stress-recovery’’) were plotted against the

theoretical quantiles of the normal distribution. The gene names

are indicated above each plot.

(TIF)
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