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Single-Photon Atomic Cooling

Publication No.

Gabriel Noam Price, Ph.D.

The University of Texas at Austin, 2009

Supervisor: Mark G. Raizen

This dissertation details the development and experimental implemen-

tation of single-photon atomic cooling. In this scheme atoms are transferred

from a large-volume magnetic trap into a small-volume optical trap via a single

spontaneous Raman transition that is driven near each atom’s classical turning

point. This arrangement removes nearly all of an atomic ensemble’s kinetic en-

ergy in one dimension. This method does not rely on a transfer of momentum

from photon to atom to cool. Rather, single-photon atomic cooling achieves

a reduction in temperature and an increase in the phase-space density of an

atomic ensemble by the direct reduction of the system’s entropy. Presented

here is the application of this technique to a sample of magnetically trapped

87Rb. Transfer efficiencies between traps of up to 2.2% are demonstrated.

It is shown that transfer efficiency can be traded for increased phase-space

compression. By doing so, the phase-space density of a magnetically trapped

ensemble is increased by a factor of 350 by the single-photon atomic cooling

process.

ix



Table of Contents

Acknowledgments v

Abstract ix

List of Tables xiii

List of Figures xiv

Chapter 1. Introduction 1

1.1 A Brief History of Laser Cooling . . . . . . . . . . . . . . . . 1

1.2 Laser Cooling as an Enabling Tool . . . . . . . . . . . . . . . . 4

1.3 Limitations of Laser Cooling . . . . . . . . . . . . . . . . . . . 5

1.4 Introduction to Single-Photon Cooling . . . . . . . . . . . . . 8

1.5 Single-Photon Cooling as a Maxwell’s Demon . . . . . . . . . . 16

1.6 A Note on Units . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 2. Operational Concepts 24

2.1 Rubidium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Fine and Hyperfine Structure . . . . . . . . . . . . . . . . . . . 26

2.2.1 Fine Structure . . . . . . . . . . . . . . . . . . . . . . . 26

2.2.2 Hyperfine Structure . . . . . . . . . . . . . . . . . . . . 29

2.3 The Zeeman Effect . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4 Magnetic Trapping . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Interaction of Light with Atoms . . . . . . . . . . . . . . . . . 45

2.5.1 The Optical Dipole Force . . . . . . . . . . . . . . . . . 45

2.5.2 Scattering Forces . . . . . . . . . . . . . . . . . . . . . . 49

2.5.2.1 Optical Bloch Equations . . . . . . . . . . . . . 50

2.5.2.2 Optical Molasses . . . . . . . . . . . . . . . . . 55

2.5.2.3 Sisyphus Cooling . . . . . . . . . . . . . . . . . 59

x



2.5.2.4 Magneto-Optical Trap . . . . . . . . . . . . . . 64

2.6 Branching Ratios . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.7 Laser Frequency Control . . . . . . . . . . . . . . . . . . . . . 72

2.7.1 Doppler Broadening . . . . . . . . . . . . . . . . . . . . 72

2.7.2 Saturation Absorption Spectroscopy . . . . . . . . . . . 75

2.7.3 Laser Frequency Lock . . . . . . . . . . . . . . . . . . . 78

2.8 Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.8.1 Absorption Imaging . . . . . . . . . . . . . . . . . . . . 80

2.8.2 Fluorescence Imaging . . . . . . . . . . . . . . . . . . . 83

Chapter 3. Experimental Apparatus 85

3.1 Vacuum Chamber . . . . . . . . . . . . . . . . . . . . . . . . 85

3.1.1 Upper Chamber . . . . . . . . . . . . . . . . . . . . . . 86

3.1.2 Middle Chamber . . . . . . . . . . . . . . . . . . . . . 90

3.1.3 Lower Chamber . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2.1 Near-Resonance Lasers . . . . . . . . . . . . . . . . . . 96

3.2.1.1 MOT Master Laser . . . . . . . . . . . . . . . 98

3.2.1.2 Slave Lasers . . . . . . . . . . . . . . . . . . . 105

3.2.1.3 Upper MOT Horizontal Slave Laser . . . . . . 108

3.2.1.4 Upper MOT Diagonal Slave Laser . . . . . . . 110

3.2.1.5 Lower MOT Slave Laser . . . . . . . . . . . . . 112

3.2.1.6 Repump Master Laser . . . . . . . . . . . . . . 112

3.2.1.7 Depopulation Beam . . . . . . . . . . . . . . . 116

3.2.2 Far-Detuned Laser . . . . . . . . . . . . . . . . . . . . 118

3.3 Magnetic Trap . . . . . . . . . . . . . . . . . . . . . . . . . . 124

3.4 Imaging Systems . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.4.1 Vertical Imaging . . . . . . . . . . . . . . . . . . . . . . 127

3.4.2 Horizontal Imaging . . . . . . . . . . . . . . . . . . . . 129

xi



Chapter 4. Single-Photon Atomic Cooling in 87Rb 131

4.1 Overview of Single-Photon Cooling 87Rb . . . . . . . . . . . . 131

4.2 Crossed Dipole Beam Configuration . . . . . . . . . . . . . . . 138

4.3 “Optical Box” Configuration . . . . . . . . . . . . . . . . . . 145

4.4 “Optical Trough” Configuration . . . . . . . . . . . . . . . . . 156

4.5 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 179

Bibliography 183

Vita 196

xii



List of Tables

2.1 87Rb Physical Properties . . . . . . . . . . . . . . . . . . . . . 26

2.2 87Rb D2 Transition Hyperfine Structure Constants . . . . . . . 32

2.3 87Rb D2 Transition “g-factors” . . . . . . . . . . . . . . . . . 38

3.1 Verdi V10 system specifications. . . . . . . . . . . . . . . . . . 119

xiii



List of Figures

1.1 A Two-Level Atom . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 A Three-Level Atom . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 One-Way-Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Simple One-Way-Wall Cooling Scheme . . . . . . . . . . . . . 11

1.5 One-Way-Wall Cooling Scheme in an External Potential . . . 14

1.6 Cooling an Atomic Ensemble . . . . . . . . . . . . . . . . . . . 15

1.7 Reconstruction of an Initial Energy Distribution . . . . . . . . 18

1.8 Trap Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 87Rb D2 Transition Hyperfine Structure . . . . . . . . . . . . . 33

2.2 Vector Model of the Hyperfine Interation . . . . . . . . . . . . 35

2.3 Zeeman Spitting of the F = 1 Hyperfine Manifold . . . . . . . 39

2.4 Magnetic Field from a Circular Loop . . . . . . . . . . . . . . 42

2.5 Magnitude of the Magnetic Field Produced by the Anti-Helmholtz
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Ensemble of Two-Level Atoms Interacting with a Monochro-
matic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.7 Geometry of Optical Molasses . . . . . . . . . . . . . . . . . . 56

2.8 Optical Molasses in 1-D . . . . . . . . . . . . . . . . . . . . . 57

2.9 Sisyphus Cooling Effect . . . . . . . . . . . . . . . . . . . . . . 61

2.10 Magneto-Optical Trap Geometry . . . . . . . . . . . . . . . . 65

2.11 1-D MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.12 Decay Mode Branching Ratios from the |F ′ = 1,mF = 1〉 State 71

2.13 The Doppler Effect . . . . . . . . . . . . . . . . . . . . . . . . 74

2.14 Typical Saturation Absorption Spectroscopy Layout . . . . . . 75

2.15 Saturation Absorption Spectroscopy: Two-Level Atom . . . . 76

2.16 Cross-over Resonance . . . . . . . . . . . . . . . . . . . . . . . 77

2.17 Laser Frequency Locking Layout . . . . . . . . . . . . . . . . . 78

xiv



3.1 Vacuum Chamber . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2 Upper Vacuum Chamber . . . . . . . . . . . . . . . . . . . . . 88

3.3 Middle Vacuum Chamber . . . . . . . . . . . . . . . . . . . . 92

3.4 Lower Glass Cell . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.5 Helicoflex Seal . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.6 Near-Resonance Laser Frequencies . . . . . . . . . . . . . . . . 97

3.7 MOT Master Laser . . . . . . . . . . . . . . . . . . . . . . . . 99

3.8 MOT Master Saturation Absorption Spectroscopy Layout . . . 101

3.9 MOT master saturation absorption signal . . . . . . . . . . . . 103

3.10 MOT Master Beam Distribution . . . . . . . . . . . . . . . . . 104

3.11 Slave Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.12 Injection of Slave Lasers . . . . . . . . . . . . . . . . . . . . . 107

3.13 Upper MOT Horizontal Slave Laser Beam Distribution . . . . 109

3.14 Upper MOT Diagonal Slave Laser Beam Distribution . . . . . 111

3.15 Lower MOT Slave Laser Beam Distribution . . . . . . . . . . 112

3.16 Repump Master Saturation Absorption Spectroscopy Layout . 114

3.17 Repump Master Saturation Absorption Signal . . . . . . . . . 115

3.18 Repump Master Beam Distribution . . . . . . . . . . . . . . . 116

3.19 Depopulation Beam . . . . . . . . . . . . . . . . . . . . . . . . 117

3.20 The Optical Trough . . . . . . . . . . . . . . . . . . . . . . . . 120

3.21 Verdi Beam Distribution . . . . . . . . . . . . . . . . . . . . . 123

3.22 Picture of Magnetic Trap . . . . . . . . . . . . . . . . . . . . . 124

3.23 Picture of Single Quadrupole Coil . . . . . . . . . . . . . . . . 125

3.24 Schematic of Magnetic Trap . . . . . . . . . . . . . . . . . . . 126

3.25 Vertical Probe Beam Path . . . . . . . . . . . . . . . . . . . . 128

3.26 Horizontal Probe Beam Path . . . . . . . . . . . . . . . . . . . 129

4.1 Overview of the Single-Photon Cooling Process . . . . . . . . 135

4.2 Depopulation Sheet . . . . . . . . . . . . . . . . . . . . . . . . 137

4.3 Crossed Beam Dipole Trap Geometry . . . . . . . . . . . . . . 139

4.4 Effective Combined Potential in Cross Beam Configuration for
the |F = 2,mF = 2〉 state . . . . . . . . . . . . . . . . . . . . 140

4.5 Comparison of Effective Potentials . . . . . . . . . . . . . . . 141

xv



4.6 Transition Location . . . . . . . . . . . . . . . . . . . . . . . . 142

4.7 Fluorescence Images with and without Depopulation Beam . . 143

4.8 Temperature of Atoms Cooled in the Cross Beam Configuration 144

4.9 Optical Box Trap . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.10 Calculated Potential due to the Optical Box Trap . . . . . . . 147

4.11 Total Potential in the |F = 2,mF = 2〉 and |F = 1,mF = 0〉
States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.12 Number of Atoms loaded into Optical Box vs. Depopulation
Beam Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.13 Incremental Atom Capture at a Fixed Translation Velocity . . 153

4.14 Captured Atom Number as a Function of Loading Time . . . 154

4.15 Atoms in Magnetic Trap vs. Gradient . . . . . . . . . . . . . . 158

4.16 Geometry of the “Optical Trough” . . . . . . . . . . . . . . . 159

4.17 “Optical Trough” Potential in the ŷ-ẑ Plane . . . . . . . . . . 160
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Chapter 1

Introduction

This chapter gives a brief introduction to the motivation and experi-

mental methods developed and demonstrated in this dissertation. It begins

with a brief discussion of the history of laser cooling. Next, the role laser cool-

ing has played in advancing scientific knowledge is briefly presented. Finally,

the method of single-photon atomic cooling, the topic of this dissertation, is

presented in general terms and its advantages over established laser cooling

techniques as well as its limitations are explored.

1.1 A Brief History of Laser Cooling

Laser cooling of atomic vapors has a long and interesting history, how-

ever I will only attempt to highlight some key advancements in the field to

place the development of single-photon cooling in the proper context. The first

experiment in this field was carried out in 1933 by Frisch when he observed

the deflection of an atomic beam by resonant light emitted from a sodium

lamp [1]. In this experiment the deflection of the atomic beam was due to the

scattering of a single resonant photon per atom on average. The important

observation was that when a resonant photon is absorbed by an atom, in ad-

1



dition to driving an internal transition, it also imparts a momentum kick. The

magnitude of momentum transfered from photon to atom is given by the de

Broglie relation

|p| = ~k (1.1)

where k = w/c is the magnitude of the wavevector of the resonant light. This

landmark experiment demonstrated the possibility of using light to control

atomic external degrees of freedom, namely position and momentum. Progress

in this field effectively stopped after this observation and further advancement

would have to await the invention of the laser.

Interest was revitalized 40 years later with a series of proposals to

cool and trap both ions and neutral atoms using the Doppler effect [2, 3].

The proposed idea is quite ingenious and is worth quickly revisiting here. It

involves directing a laser beam tuned slightly below the resonance frequency

(red detuned) at an atomic ensemble. The effect of such an arrangement can

be deduced by considering what happens to an atom in the ensemble in the

following two cases: when the atom travels toward the laser beam and when the

atom travels away from it. In the first case, the atom will be brought closer into

resonance by the Doppler effect and therefore its scattering rate will increase.

In the latter case the motion of the atom will cause it to be further out of

resonance with the laser beam, reducing the scattering rate. Note that the

absorption of each photon is directional, while the direction of the subsequent

spontaneous emission is random. After a large number of scattering events

the momentum kicks due to spontaneous emission will average to zero, while

2



the momentum kicks due to absorption will sum. The result is that atoms

traveling towards the red detuned beam will be slowed by momentum transfer

from scattered photons. This arrangement does more than simply slow the

center-of-mass motion of an ensemble, it also cools it because the red detuned

beam affects atoms in a velocity dependent way. Quickly moving atoms are

Doppler shifted to the blue more than slowly moving atoms (assuming both

are traveling toward the laser source), causing them to scatter at a greater rate

which in turn decelerates them more quickly than more slowly moving atoms.

This compresses the velocity spread of the ensemble, thereby cooling it.

Experiments applying this cooling scheme to electromagnetically trapped

ions were successfully performed in 1978 [4, 5]. Then in 1985 the first exper-

iments demonstrating slowing of neutral atomic beams were published [6, 7].

That same year, trapping in velocity space with counter propagating red de-

tuned beams, an arrangement known as optical molasses, was demonstrated

at Bell Labs by a group led by S. Chu [8]. The spatial confinement of sodium

atoms using a magnetic field was also demonstrated in Gaithersburg by the

group of W. Phillips [9] in that very productive year of 1985. Two years later,

the combination of ideas utilized in these two experiments were used to both

confine and cool atoms in a technique known as magneto-optical trapping

(MOT) [10].

Shortly after this achievement, groups began to observe and report a

troubling, or perhaps welcome, disagreement between experiment and theory.

In particular, the group of W. Phillips reported temperatures of atomic sam-

3



pled cooled with optical molasses to be much colder than the lower bound set

by theory [11] (See Sec. 1.6 for a discussion of the use of “temperature” in this

context). This conflict was a result of the assumption made in theoretical de-

scriptions of the process which modeled the atom as a purely two-level system,

devoid of magnetic substructure. An improved theory, including magnetic sub-

structure, was developed by C. Cohen-Tannoudji and J. Dalibard in 1989 [12]

and it resolved the discrepancy between theory and experiment and placed a

new and much colder lower bound temperature, the recoil temperature Tr, on

optical molasses. These achievements resulted in tremendous interest in laser

based atomic cooling methods and resulted in a Nobel prize awarded to Steven

Chu, Claude Cohen-Tannoudji, and William D. Phillips in 1997.

1.2 Laser Cooling as an Enabling Tool

Laser cooling of atomic vapors has served as a technique which has

enabled the study of more idealized physical systems, expanding and refining

scientific knowledge in a vast amount of areas. Laser cooling made possible the

creation and study of Bose-Einstein condensates (BEC) of dilute atomic vapors

[13–15]. It plays a central role in the latest generation of atomic fountain

clocks [16] and has made possible the creation of optical frequency standards

[17]. The study of cold atomic collisions, nonlinear optical effect and basic

quantum mechanical phenomena have greatly benefited from the ability to

cool atoms. Precision spectroscopic investigations of the energy structure of

atoms have benefited tremendously from the ability to trap and cool atomic

4



samples by allowing for very long interaction times and a suppression of the

Doppler effect (including time dilation). Cooled atoms with sufficiently long

deBroglie wavelengths are of use in atom interferometers which can function

as accelerometers, rotation sensors, gravimeters, and gradiometers. While this

list is in no way exhaustive, it is merely to justify the incredibly important

contribution laser cooling has provided to the scientific community.

1.3 Limitations of Laser Cooling

While the contributions of atomic laser cooling are substantial, no tech-

nique is without limitation. The major limitation of established atomic laser

cooling techniques is that they rely on the transfer of momentum from photon

to atom to work. This seemingly trivial statement places quite stringent re-

quirements on atomic species amenable to these techniques. As a first step in

seeing why, consider the number of scattering events necessary to stop a room

temperature 87Rb atom with photons resonant with its D2 transition. We can

approximate this number as mv̄/~k ≈ 45, 000 where m and v̄ are the mass

and velocity of a 87Rb atom at 300K and where k = 2π/780 nm. From this

consideration it is clear that a very large number of photon scattering events

are necessary to stop a room temperature atom. In order to scatter such a

large number of photons in an experimentally realizable way the atom must

possess an effective two-level structure, depicted in Fig.1.1, that is accessible

with a sufficiently intense available laser source.

The reason an effective two-level atom is required for laser cooling is

5
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Figure 1.1: The energy level structure of a two-level atom. An atom initially
in the ground state |g〉 is transfered by a resonant photon into the excited
state |e〉. Once there it can only decay back into the ground state |g〉.

clear. In a typical laser cooling experiment atoms are initially in the ground

state |g〉 and they are illuminated by a single frequency which is tuned below

the atomic resonance. After absorbing a photon, atoms are excited into the

upper state |e〉. If the incident field is not sufficiently intense to cause stimu-

lated emission to dominate (as is the case when laser cooling), then the atom

will spontaneously decay back into the ground state after a time (τ ∝ 1/Γ)

characteristic of the transition. After it decays back into the ground state |g〉

it is again resonant with the laser beam and ready to scatter again. A two-

level structure ensures the continuation of this closed cycle. If, however, the

atomic energy level structure is more complex then a second and detrimental

possibility arises. After being excited into the upper state |e〉, the atom can

decay to two different levels as shown in Fig.1.2. If it decays to |g〉, then it will

again be resonant with the applied field and it will scatter again. If, however,

it decays to the level |h〉, it will not be resonant with the applied field and will
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Figure 1.2: The energy level structure of a three-level atom. An atom initially
in the ground state |g〉 is transfered by a resonant photon into the excited state
|e〉. Once there it has two possible decay channels in contrast to the two-level
system.

be removed from the cooling cycle. Because a very large number of scattering

events are necessary to cool an atom, even a small probability of decaying into

a state other than |g〉 is detrimental to the process.

Clearly no atom is truly two-level. Even hydrogen, the simplest atom,

has a rich energy level structure [18]. Of course, this fact has not rendered laser

cooling unworkable. Experimentally it means that one has to add additional

“repumping” laser beams to reintroduce atoms into the cooling cycle after they

have decayed to a state non-resonant with the cooling laser beam. For atoms

with relatively simple energy structures such as alkali metals, suitable schemes

have been developed with great success. With somewhat more effort many

Noble gases have been laser cooled by first placing them into a metastable

state. Additionally, through extreme efforts some alkaline earth metals as

well as a handful of other atoms have been cooled. But for the vast majority

of atoms and for all molecules laser cooling has not been an experimentally
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realizable method of cooling. Surprisingly, even hydrogen has evaded laser

cooling, not because it lacks a suitable effective two-level structure, but rather

due to the lack of an available laser source at 121 nm.

The goal of the work detailed in this dissertation was to develop and

demonstrate a more general cooling method that could potentially be applied

to the vast majority of atoms in the periodic table.

1.4 Introduction to Single-Photon Cooling

Single-photon cooling differs fundamentally from established laser cool-

ing techniques because it does not rely on the transfer of momentum from

photon to atom to cool. Rather, cooling is achieved through the direct re-

duction of the entropy of an atomic ensemble. This feature of single-photon

cooling sidesteps the major limiting factor of established laser cooling tech-

niques allowing it to be potentially applied to a much larger portion of the

periodic table, as well as molecules. To justify these claims this section will

discuss, in general terms, the concept of single-photon cooling including, for

pedagogical reasons, its origin and development. A more detailed description

of the specific implementation of this cooling technique to a sample of 87Rb

will be deferred until Ch. 4.

The original motivation for the development of single-photon cooling

came from the field of plasma physics, where it was shown that an efficient

asymmetric barrier for electrons or ions could be produced by subjecting the

magnetically trapped species to a ponderomotive potential in the radio fre-
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quency regime [19]. This then led to the question of whether an analogous

asymmetric barrier could be constructed for neutral atoms, and furthermore,

whether such a device could be used to cool an atomic sample.

The answer to both of these questions was yes. In December 2004

and February 2005, papers were published outlining methods of producing

asymmetric barriers optically for neutral atoms. While conceived at nearly

the same time, these two methods were arrived at independently and differ

from each other in several ways.

In a paper authored by A. Ruschhaupt and J.G. Muga [20], an optical

asymmetric barrier was considered in the context of atomic control but not

cooling.. It discussed a possible implementation of an “atom diode,” a device

that rectifies the motion of neutral atoms by letting ground-state atoms pass

in one direction but not in the opposite direction. This process relied on

stimulated Raman adiabatic passage (STIRAP) and only worked over a limited

atomic velocity range. It required the use of three lasers: two to achieve the

adiabatic transfer and the third to reflect the ground state atoms. While

interesting for its use in atomic control, this paper did not consider using the

diode for atomic cooling. These authors later collaborated with M.G. Raizen

on a paper describing a version of the atomic diode which used a “quenching”

beam to improve performance [21].

Independent work came from our group and also described a method

of constructing an asymmetric one-way barrier for neutral atoms [22]. The

details of the proposal differed from that of A. Ruschhaupt and J.G. Muga

9



and our current implementation in 87Rb, but the enduring contribution of this

paper was that it considered such a device in the context of atomic cooling.

Consider for the moment, without an explicit description of its con-

struction, a one-way barrier for neutral atoms. Such a “one-way-wall” allows

atoms to pass through it from one direction, but reflects them when they

come from the opposite direction, as shown in Fig. 1.3. The pertinent ques-

Neutral Atom

Figure 1.3: Depiction of a hypothetical one-way-wall for neutral atoms. While
this wall allows atoms to transmit when traveling from left to right, it reflects
atoms traveling from right to left.

tion becomes if such a one-way-wall can be used to cool an atomic ensemble. A

simple theoretical arrangement utilizing a one-way-wall which clearly indicated

that cooling is possible is given in Fig. 1.4. There a one-way-wall has been

placed in a 1-D hard walled box containing an ensemble of thermal atoms. As

the atoms explore the box they accumulate on one side of the one-way-wall.

The atoms become confined to a small portion of the box of length l2, which

they originally filled, thus the ensemble of atoms has had its spatial spread

σx reduced. If we assume that no corresponding increase in the momentum

10
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Figure 1.4: Depiction of a simple, hypothetical one-way-wall cooling scheme.
(a) A one-way-wall is placed into a confined ensemble of atoms. (b) After
sufficient time the atoms have explored the box and have accumulated on one
side of the one-way-wall.

distribution σp has taken place due to the action of the one-way-wall, then

phase-space compression of the atomic ensemble has been accomplished with

this simple arrangement. Here phase-space refers to the product of the widths

of the spatial and momentum distributions ρ ∼ σxσp.

A compression in phase-space can be used to reduce the temperature

of a sample through adiabatic expansion. In this case one can imagine adia-

batically moving the one-way-wall to the left in Fig. 1.4 to achieve this. If we
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assume that l1 >> l2 and that the action of the one-way-wall heats the en-

semble only a negligible amount then the phase-space compression C achieved

is given simply by

C ≡ ρafter

ρbefore

≈ l1
l2

(1.2)

While instructive, this simple example is clearly unphysical. The action

of the barrier violates time reversal symmetry! Additionally, we have gotten

something, namely atomic cooling, for nothing – in clear violation of the second

law of thermodynamics. The resolution of these troubling facts comes from

recognition that any physical realization of an atomic one-way-wall must affect

the atoms beyond simply transmitting or reflecting them. For the action of the

one-way-wall as presented thus far to obey time reversal symmetry the atoms

on the left of the wall must be different in some way from the atoms on the

right of the wall. Additionally, the decrease in entropy produced through the

action of the one-way-wall must be compensated for by an increase in entropy

elsewhere if this scheme is to obey the second law of thermodynamics. Indeed,

in the physical realization of this cooling process presented in this dissertation

the one-way-wall labels the atoms on either side of the barrier by placing them

into distinct hyperfine states through an irreversible spontaneous scattering

process of a single photon as atoms transit the barrier. This scattering process

is of course the origin of the name “single-photon cooling.” Much more will

be said of this in Ch. 4 where a complete description of the cooling process

applied to 87Rb is described.

Now consider a second example, a slight variation of the first, which
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demonstrates the cooling power of a one-way-wall process in a geometry more

similar (but not identical) to that used in the actual experiment. In this

example, depicted in Fig. 1.5, an atom is placed into an external, conservative

potential. This potential in indicated by the “V”-shape in each sub-figure

(a-e). As shown in Fig. 1.5(a) the one-way-wall is initially positioned such

that the atom does not have sufficient energy to reach it. To initiate cooling,

the one-way-wall is slowly swept towards the center of the confining external

potential. If this is done slowly enough, the atom will first encounter the

one-way-wall near its turning point, where it has exchanged most of its kinetic

energy for potential energy. The sweep must be done slowly because as the one-

way-wall is swept its intersection point with the confining potential decreases

in energy at a rate Ė. If the oscillation time of the trapped atom in the

confining potential is given by Tatom then the average residual kinetic energy

Kres retained by the atom after transiting the one-way-wall due to the motion

of the one-way-wall is

Kres =
1

2
ĖTatom (1.3)

Experimental factors force one to compromise between a small Kres and a

reasonable sweep duration. After transiting the one-way-wall the atom is

captured with little residual kinetic energy Fig. 1.5(c). According to our

working definition of temperature given in Eq. 1.5 this atom has been cooled.

As the one-way-wall then continues to sweep towards the center of the external

confining potential one may expect that the atom will heat back up. This is

not so. The work done on the atom by the one-way-wall as it moves is equal to
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Figure 1.5: (a) An atom is placed in an external confining potential along
with a one-way-wall which is initially placed such that the atom does not have
sufficient energy to reach it. (b) The one-way-wall is slowly swept towards
the trap center, so that the atom first encounters it at its turning point. (c)
The one-way-wall continues to sweep in, eventually returning the cold atom to
the center of the external confining potential (d). (e) The one-way-wall moves
away from the region containing the atoms.

the increase in potential energy of the atom [21]. This is completely analogous

to the fact that the work done by an ideal elevator is equal to the change in

the potential energy of its occupants. After sweeping through the center of

the external confining potential the atom remains trapped at its center, but is

now cold [Fig. 1.5(d)]. The one-way-wall continues its sweep out of the region

of the atom [Fig. 1.5(e)].

Because this scheme is fundamentally a single atom process, it works

equally well on an ensemble of non-interacting atoms. To work on an ensemble

the one-way-wall must be initially positioned such that the most energetic atom

in the group does not have sufficient energy to reach it (Fig. 1.6). The rate

at which the one-way-wall is swept must be slow enough to allow all atoms in

the ensemble to reach it with negligible kinetic energy. Because this technique

operates at the single particle level it does not rely on a specific form of inter-
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Figure 1.6: (a) A non-interacting atomic ensemble is placed in an external
confining potential along with a one-way-wall which is initially placed such
that none of the atoms have sufficient energy to reach it. (b) The one-way-
wall is slowly swept towards the trap center, capturing atoms as it encounters
them at their turning points. (c) The one-way-wall continues its sweep, even-
tually capturing all the atoms and returning them to the center of the external
confining potential with reduced kinetic energy.

particle interactions to work, as does evaporative cooling [23]. This feature

further generalizes and extends its potential applicability.

This section served as an introduction to the concept of single-photon

cooling. In summary, this technique begins by trapping an atomic ensemble

in a conservative potential. Then, a one-way-wall for atoms is positioned in

the wings of the trap. Cooling is initiated by slowly sweeping the one-way-

wall towards the center of the conservative potential. The sweep must be slow

compared to the oscillation frequency of the trapped atoms, so that they first

encounter it near a turning point. After transmitting through the one-way-

wall near a turning point atoms become trapped with little kinetic energy. The

atoms become trapped because they are placed into a different internal state
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by the one-way-wall through an irreversible step. The one-way-wall continues

to sweep until all atoms have encountered it, been cooled and returned to the

center of the conservative potential. This general technique is applied, for the

first time, to the specific case of cooling magnetically trapped 87Rb, and details

of its specific implementation and results are given in Ch. 4.

1.5 Single-Photon Cooling as a Maxwell’s Demon

In 1867 James Clerk Maxwell proposed the notion of a “very observant

and neat-fingered being” and wondered if under certain circumstances it could

possibly violate the second law of thermodynamics [24]. He imagined such a

creature, later given the honorable designation of a “Maxwell’s Demon” by

Lord Kelvin [25], as operating a trap door separating two halves of a vessel

filled with gas molecules initially in thermal equilibrium. He argued that if the

demon sensed the velocity of molecules at they approached and directed fast-

moving molecules into one half of the vessel and slow-moving molecules into

the other half it would cause a temperature differential “without expenditure

of work.” A second version of the demon would simply let molecules pass

into one half of the vessel but never out of it, thus developing a pressure

differential. Such apparent violations of the second law of thermodynamics

spurred intense interest and research into “exorcising” such demons, in other

words demonstrating that they do not violate any microscopic or macroscopic

law of physics.

One enduring notion, originally proposed by Szilard [26], and later
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worked on by Brillouin [27–29], identified the information obtained by the

demon, which it used to determine the appropriate action of the trap door,

as having physical entropic content. This concept effectively exorcised such

Maxwell Demons because the entropy associated with the information gathered

by the demon is never less than the reduction of entropy due to the demon’s

actions. This notion of information carrying entropy has become a key concept

in information theory ever since [30–33]. Despite the fact that the work done

by Szilard and others demonstrated that such processes do not violate any

physical law, any proposal or experiment in this vein has been continued to

be called a Maxwell’s Demon.

Single-photon cooling is an optical realization of a Maxwell’s Demon.

An atomic ensemble confined in a conservative potential is directly analogous

to the ‘gas in a vessel.’ The demon analog, however, is not simply the one-way-

wall alone. Rather, it is the combination of the one-way-wall and its carefully

selected slow sweep through the trapped atomic ensemble. The information

gathered by the demon is the single photon spontaneously scattered by each

atom as it transits the barrier. To make things a little more concrete, consider

the action of the single-photon cooling process on a non-interacting atomic

ensemble with the well defined energy distribution fE defined such that

n(E) = NfE dE (1.4)

where N is the total number of atoms, and n(E) is the number of atoms with

energy between E and E+dE. Figure 1.7(a) shows such an energy distribution
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fE. Furthermore, assume that the conservative confining potential and the

position of the one-way-wall is well known at all times during the cooling

process. As shown in Fig. 1.7(b), as the one-way-wall is slowly swept towards
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Figure 1.7: (a) The initial energy distribution of a non-interacting atomic en-
semble. (b) This ensemble is placed into a conservative trapping potential. As
the one-way-wall sweeps through the ensemble it encounters the most energetic
atoms first, which spontaneously scatter photons as they transit the barrier.
A photodetector monitors the scattered light. (c) A plot of the photodetector
signal Ipd as a function of the position of the one-way-wall x reconstructs the
original energy distribution of the ensemble.

the center of the confining potential, it first encounters the most energetic

atom at a position where the atom has converted (nearly) all of its energy

into potential energy. When the atom transits the one-way-wall it undergoes

an irreversible process which involves the scattering of a spontaneous photon.

Detection of this photon reveals the atom’s initial energy through knowledge

of the location of the one-way-wall x at the time of scatter and the shape

of the confining potential. By detecting and recording each spontaneously

scattered photon as a function of the one-way-wall’s position with respect to

the confining potential, the initial energy distribution can be reconstructed,

as shown in Fig. 1.7(c). Of course, this sweep also has the effect of cooling
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the atomic ensemble. Not surprisingly and as shown in [34], the information

entropy content carried away by the scattered photons is equal to the reduction

in the entropy of the cooled atomic ensemble.

What is really striking is how extremely efficient the single-photon cool-

ing process is in using information entropy to cool. In the ideal case described

above it is perfectly efficient; the reduction in entropy of the atomic ensemble

equals the information entropy carried away by the spontaneously scattered

photons. When compared to other established atomic laser cooling techniques,

where the increase in photon entropy is typically several orders of magnitude

higher than the decrease in the entropy of the atomic ensemble cooled [35], we

see just how truly remarkable this process is. Additionally, single-photon cool-

ing is a passive technique in the sense that one need not monitor the scattered

photons at all for the process to work. In contrast, stochastic cooling methods,

which like single-photon techniques scatter photons which carry information

related the ensemble’s properties, must actively feedback on the data gathered

from scattered photons to operate [36, 37].

1.6 A Note on Units

A brief discussion of the terminology and units used throughout is

warranted. Of particular note is the loose manner in which the term “tem-

perature” is used in the laser cooling community and indeed in this text. The

concept of temperature is defined in thermodynamics as a property of a closed

system in thermal equilibrium with its surroundings [38, 39]. In typical atomic
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cooling experiments, which are performed in ultrahigh vacuum environments,

the atomic ensemble being cooled is necessarily trapped optically and/or mag-

netically away from any thermal reservoir (e.g. the vacuum chamber walls).

While the atoms may be in a steady-state situation, they are not necessarily in

thermodynamic equilibrium. Despite this fact it is often convenient to define

the temperature of an ensemble of atoms as

1

2
kBT = 〈Ek〉 (1.5)

where kB is Boltzmann’s constant and 〈Ek〉 is the average kinetic energy of an

ensemble in 1-D.

It is also worth noting that throughout this text, cooling is used not

in the weak sense, as simply a reduction in temperature, but in a much more

meaningful way - as an increase in phase-space density. This distinction must

be made because an atomic vapor can always be trivially cooled through adia-

batic expansion, but this sort of “cooling” is rarely useful in experiments. For

most atomic physics experiments such as Bose-Einstein condensation or spec-

troscopic investigations of atomic energy structures, an increase in phase-space

density is what is helpful.

As mentioned above, atoms in these sorts of experiments are typically

trapped optically and/or magnetically and so a trapping depth is commonly

reported. In this context, trapping depth refers to the potential energy depth

of the trap (see Fig. 1.8). Atoms with total energy less than the trap depth

are considered trappable while those with energy greater than the trap depth
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are untrappable.

The SI unit for energy is the Joule, however it is often more convenient

in atomic cooling experiments to divide this value by Boltzmann’s constant to

report a temperature. This has the benefits of allowing a simple comparison

between trap depth and an atomic ensemble’s temperature as well as putting

the values reported in a more agreeable form. For example, typical optical

trap depths reported in this dissertation are on the order of 10µK, which

corresponds to a value of 1.4 × 10−28 J in SI units.
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Figure 1.8: Trap depth in the context of atomic cooling. Experimentally the
potential energy surface shown in the figure is typically due to the interaction
of an atom with an electric, magnetic or optical field.

For completeness, a set of units used extensively throughout the laser

cooling community is presented. Each unit represents a value or temperature

of significant importance. The first such value is the first order Doppler shift

∆ωD =
vatom

c
ωL. (1.6)
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This represents a shift in the frequency of an incident light field in the frame

of an atom in motion with respect to the light source. Here ∆ωD is the shift in

frequency, ωL is the rest frame frequency and vatom is the component of atomic

velocity parallel to the wavevector of the incident light field. This relation is

valid for vatom/c << 1, where c is the vacuum speed of light, and is sufficient

for most cases encountered when optically cooling an atomic sample. There

are also several atomic velocities and corresponding temperatures of interest,

I will discuss them in order of descending energy.

The highest atomic velocity of significance is known as the cooling

velocity vc. It corresponds to the velocity of an atom such that its Doppler

shift is comparable to the natural linewidth Γ of the transition being used to

cool the atom. This value represents the velocity at which an atom is just at

the edge of possible photon absorption from a narrow band laser beam which

is resonant with the transition of interest. This velocity is given by

vc ≡
Γ

kL

, (1.7)

where kL is the wavevector of the incident light in the rest frame. For example,

vc ≈ 4.5 m/s in 87Rb, the element used in all experiments discussed in this

dissertation. The temperature corresponding to this velocity is given by

∆Tc ≡
mΓ2

kBk2
L

, (1.8)

where m is the atomic mass.

The next value of interest corresponds to the energy associated with
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the atomic transition and is called the Doppler temperature

TD ≡ ~Γ

2kB

. (1.9)

This value represent a lower limit, the Doppler limit, in some laser cooling

techniques. For 87Rb the Doppler temperature is ≈ 146 µK.

The last important value is the recoil velocity vr. It corresponds to

the velocity change an atom undergoes from absorbing or emitting a single

resonant photon. It is given by

vr ≡
~kL

m
, (1.10)

and has a value of ≈ 5.8 mm/s in 87Rb. The temperature associated with this

velocity, the recoil temperature Tr is given by

Tr ≡
~

2k2
L

mkB

, (1.11)

and has a value of ≈ 362 nK in 87Rb. This temperature is seen as the lower

limit to all atomic laser cooling methods, although there are a few clever

schemes which circumvent it.
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Chapter 2

Operational Concepts

This chapter discusses many of the concepts necessary for a complete

understanding of the experimental procedure and results presented in this

dissertation. It begins with a general discussion of the element used during

this experimental work, rubidium. A description of the source and size of

energy level splittings resulting in the fine and hyperfine structure is given.

The interaction of atoms with external magnetic fields is discussed, as well

as how this interaction, known as the Zeeman effect, can be used to trap

rubidium. A discussion of the interaction of atoms with external optical fields

is given, both in the near and far off resonance limits. How these interactions

lead to forces which can be used to cool and control external atomic degrees of

freedom is explained. The frequency of applied optical fields must be precisely

controlled and the method used to accomplish this, a feedback loop based

on saturation absorption spectroscopy of a room temperature vapor cell, is

discussed. Finally the two methods used in this dissertation to image atomic

samples, optical absorption and atomic fluorescence are discussed.
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2.1 Rubidium

Rubidium (Rb) is an alkali metal. Its common use in atomic exper-

iments is due in part to its relatively simple energy level structure and its

possession of an accessible effective cycling transition. The simplicity of the

energy level structure is due to the fact that of Rb’s 37 electrons only one is

in the outermost shell. 85Rb is the most abundant and only stable isotope

of rubidium, however the experimental work performed in this dissertation

was done entirely on 87Rb. The reason for this is that 87Rb has a simpler

hyperfine structure, the topic of the next section. 87Rb has a relative natural

abundance of 27.83(2)% and decays to β−+87Sr with a total disintegration

energy of 0.283 MeV [40]. While unstable, the nuclear lifetime is 4.88×1010 yr

[40] making this form of rubidium effectively stable over the duration of our

experiment. The mass of 87Rb was accurately determined from a Penning trap

measurement to be m = 1.443 160 648(72)× 10−25 kg [41]. The vapor pressure

of solid Rb is an important experimental quantity because it dictates the load-

ing rate into the first stage of our experimental procedure. This value can be

taken from a vapor-pressure model for solid Rb given by [42], which is

log10Pv = 2.881 + 4.857 − 4215

T
, (2.1)

where Pv is the vapor pressure in torr and T is in K. This model is specified to

have an accuracy better than ±5% from 298-550K. The ambient temperature

surrounding our experimental chamber is approximately 295K resulting in a

vapor pressure of 2.9 × 10−7 torr. More will be said about how this relates
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to the experimental sequence in Ch. 3. Table 2.1 summarizes the physical

properties discussed here. A more complete tabulation and discussion of these

properties is organized in an excellent reference [43].

Atomic Number Z 37
Total Nucleons Z + N 87
Relative Natural Abundance η(87Rb) 27.83(2)%
Atomic Mass m 1.443 160 648(72) × 10−25 kg
Nuclear Spin I 3/2

Table 2.1: 87Rb Physical Properties

2.2 Fine and Hyperfine Structure

This section reviews interactions leading to a splitting in atomic energy

levels. First the fine structure is explored, followed by a discussion of the

hyperfine structure in rubidium.

2.2.1 Fine Structure

The primary source of energy level splittings in atoms are the elec-

trostatic attraction between the electrons and nucleus and the electrostatic

repulsion between the individual electrons. The energy levels resultant from

these interactions are known as the Bohr energy levels. The next most im-

portant contribution to energy level splittings in low Z atoms are a result of

relativistic effects. These effects are the source of the fine structure of atomic

spectra. The fine structure energy level splittings are smaller than the Bohr

energy level splittings by a factor of ∼ α2. Here α denotes the fine structure
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constant which is given by

α =
e2

~c4πǫ0

≈ 1

137
. (2.2)

There are two causes of the fine structure splittings. The first is due to

the coupling between the magnetic moment of the electrons and the effective

magnetic field seen by the electrons due to their motion around the nucleus.

The second cause is due to relativistic corrections to the kinetic and potential

energy of the electrons. For Rb, the first contribution dominates and so I will

focus solely on it.

The Hamiltonian describing the interaction between the outermost elec-

tron’s magnetic moment and orbital angular momentum can be written as

Hfs = A(~L · ~S), (2.3)

where A is a constant parameterizing the strength of the interaction, ~S is the

spin of the electron and ~L is the orbital angular momentum of the electron.

To solve this Hamiltonian we introduce the total electron angular mo-

mentum ~J , given by

~J = ~L + ~S, (2.4)

where by the triangle inequality the quantum number J must lie in the range

|L − S| ≤ J ≤ L + S. (2.5)

The convention that the magnitude of ~J is ~
√

J(J + 1), and that the eigen-

value of Jz is mJ~ is being used. We next note that squaring both sides of
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Eq. 2.4 yields

J2 = S2 + L2 + 2~L · ~S, (2.6)

allowing us to rewrite the fine structure Hamiltonian (Eq. 2.3) as

Hfs =
A

2
(J2 − S2 − L2). (2.7)

Because the energy shift of this Hamiltonian is small compared to the

Bohr splittings, it can be introduced as a perturbation to those energy levels.

Time independent perturbation theory allows us to write the shift in an energy

level to first order due to this perturbation as

∆E = 〈Ψ|Hfs|Ψ〉. (2.8)

This notation introduces the question of what basis should be taken to make

the evaluation of this matrix element the simplest. The coupling of ~L and

~S has caused Lz and Sz to be unconserved quantities so the uncoupled basis

|L,Lz, S, Sz〉 is clearly not an eigenvector of Eq. 2.7. However, from inspection

it is clear that elements of the coupled basis |S, L, J, Jz〉 are eigenvectors of the

fine structure Hamiltonian and can be used to evaluate Eq. 2.7, immediately

resulting in

∆E =
A~

2

2
[J(J + 1) − S(S + 1) − L(L + 1)]. (2.9)

The ground state configuration of 87Rb is [Kr]5s. This means that

there is one unpaired electron and that this electron has no orbital angular

momentum, therefore S = 1/2 and L = 0. This means that the only value J

can take is J = 1/2. Evidently, the ground state is not split by Hfs because
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only one value of J is possible from this configuration. This single ground state

term can be written compactly using Russel-Saunders notation as 52S1/2. The

meaning of this term is as follows. The first number is the principle quantum

number n of the outer electron. The superscript represent 2S + 1, and here

since S = 1/2 is 2. The uppercase letter corresponds to the total orbital

angular momentum L such that S = 0, P = 1, D = 2, F = 3 . . . The subscript

represents the value of the total electronic angular momentum J .

The configuration of the first excited state of 87Rb is [Kr]5p. Because

in this state L = 1 there are two possible values of J , 1/2 and 3/2, leading

to two possible terms 52P1/2 and 52P3/2. Since the value of ∆E depends on J

these two terms are split in energy giving rise to a fine-structure doublet. The

two transitions 52S1/2 → 52P1/2 and 52S1/2 → 52P3/2 are known respectively

as the D1 and D2 transitions. The D1 transition is at ≈ 795 nm while the

D2 is at ≈ 780 nm. Because these two transitions are easily resolved by many

lasers they are typically treated separately. Indeed, the work done in this

dissertation used the D2 transition exclusively.

2.2.2 Hyperfine Structure

The hyperfine splitting of atomic energy levels is due to the interaction

of the total electronic angular momentum J with the total nuclear angular

momentum I. As the name suggests this effect is even smaller than the fine

structure splitting, reduced by the factor ∼ me/MP ≈ 1/1836 which is the

electron to proton mass ratio. As in the case of the fine structure, we can form
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the sum of the two coupled angular momentum vectors J and I, in this case

giving the total atomic angular momentum F

~F = ~J + ~I, (2.10)

which is similarly constrained by the triangle inequality to have a magnitude

with the range

|J − I| ≤ F ≤ J + I. (2.11)

To get a feeling for how this works, consider the ground state of 87Rb

which has the single term 52S1/2. Because I = 3/2 and J = 1/2, Eq. 2.11

indicates that F can take on two values: 1 or 2. In the excited state of the D2

transition the term is 52P3/2 so F can take on the values 0, 1, 2, or 3.

The Hamiltonian describing the interaction between the total electronic

angular momentum J and the total nuclear angular momentum I is given by

[44–47]

Hhfs = Ahfs
~I · ~J + Bhfs

3(~I · ~J)2 + 3
2
(~I · ~J) − I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (2.12)

where the interaction between J and the magnetic dipole moment and elec-

tric quadrupole moment of the nucleus has been included. Higher order terms

resulting from interactions with higher order nuclear moments have been ne-

glected in this Hamiltonian because experimental measurements are not suffi-

ciently accurate to assign a non-zero contribution to them. In Eq. 2.12, Ahfs

is the magnetic dipole constant and Bhfs is the electric quadrupole constant,
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the latter of which only applies to the excited manifold of the D2 transition

and not to levels with J = 1/2.

This Hamiltonian can be solved in a manner analogous to that used in

the case of fine structure splitting. We note that by squaring both sides of

Eq. 2.10 one can write,

~J · ~I =
1

2
(F 2 − J2 − I2). (2.13)

This can be used in Eq. 2.12 to solve for the shifts in energy levels due to this

interaction. Again we note that the coupling of I and J causes the uncoupled

basis |I, Iz, J, Jz〉 to no longer be an eigenvector of the Hamiltonian describing

the atom. But as before, simple inspection revels that |I, J, F,mF 〉 is an eigen-

vector of Eq. 2.12. Taking this as the basis in evaluating the perturbation due

to the hyperfine Hamiltonian results in energy splittings given by

∆Ehfs =
1

2
AhfsK + Bhfs

3
2
K(K + 1) − 2I(I + 1)J(J + 1)

4I(2I − 1)J(2J − 1)
, (2.14)

where

K = F (F + 1) − I(I + 1) − J(J + 1) (2.15)

is introduced for notational convenience.

The nuclear moment constants for the 87Rb D2 line are given in Ta-

ble 2.2. The ground state value was taken from a precise atomic fountain

measurement [48], while the excited state values were measured using a het-

erodyne technique between two ultra stable lasers referenced to atomic 87Rb

[49].
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A52S1/2
h · 3.417 341 305 452 145(45) GHz

A52P3/2
h · 84.7185(20) MHz

B52P3/2
h · 12.4965(37) MHz

Table 2.2: 87Rb D2 Transition Hyperfine Structure Constants

The hyperfine structure of the 87Rb D2 transition is shown in Fig.

2.1. The energy shifts in this figure are given by Eq. 2.14 with the constants

reported in Table 2.2. Each shift is with respect to the transition’s center of

gravity value, indicated by a horizontal dashed line.
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5 
2
S

1/2

5 
2
P

3/2

384. 230 484 468 5(62) THz

780. 241 209 686(13) nm

193.7407(46) MHz

72.9112(32) MHz

229.8518(56) MHz

302.0738(88) MHz

266.6500(90) MHz

156.9470(70) MHz

72.2180(40) MHz

2.563 005 979 089 109(34) GHz

4.271 676 631 815 181(56) GHz

6.834 682 610 904 290(90) GHz

F=3

F=0

F=2

F=1

F=1

F=2

Figure 2.1: 87Rb D2 Transition Hyperfine Structure.
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2.3 The Zeeman Effect

The Zeeman effect refers to a shift in an atomic energy level due to the

presence of an external magnetic field. Each of the hyperfine levels F contains

2F + 1 magnetic sublevels, labeled by mF , which correspond to different pro-

jections of the total atomic angular momentum along the quantization axis,

here taken to be along ẑ. These states are represented by the vectors |F,mF 〉

and are eigenvectors of the operators F 2 and Fz.

F 2|F,mF 〉 = ~
2F (F + 1)|F,mF 〉 (2.16)

Fz|F,mF 〉 = ~mF |F,mF 〉 (2.17)

In the absence of an external magnetic field, sublevels of a common

hyperfine state F are degenerate. Application of a magnetic field lifts this

degeneracy.

The total atomic magnetic moment of the atom is the sum of the elec-

tronic and nuclear moments

~µatom = −µB(gJ
~J + gI

~I), (2.18)

where µB = h · 1.399 624 604(35) MHz/G is the Bohr magneton and gJ and gI

are the total electronic angular momentum and nuclear “g-factors” which arise

from projections of ~J and ~I along ~F . The Hamiltonian for the interaction of

~µatom with an external magnetic field is [50, 51]

HZE = −~µatom · ~B. (2.19)
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Pluging Eq. 2.18 into this Hamiltonian yields

HZE = µB(gJ
~J + gI

~I) · ~B. (2.20)

If the interaction of the atom with an external field described by this equation

is small compared to the hyperfine splitting then F is a good quantum number.

A useful method of visualizing this situation is provided by the vector model

of angular momentum. This particular situation is depicted in Fig. 2.2, which

illustrates that the coupling of ~J and ~I can be interpreted as the sum of these

two vectors precessing about the total atomic angular momentum vector ~F .

In turn ~F precesses about the external magnetic field. As ~J and ~I precess

B

F
I

J

Figure 2.2: Vector model of the hyperfine interaction. The coupling of ~J and ~I
can be interpreted as the sum of these two vectors precessing about the total
atomic angular momentum vector ~F . Similarly, but at a much slower rate,
~F precesses about the external magnetic field. As ~J and ~I precess about ~F ,
their projections along ~B (the quantization axis) change in time. Therefore
the quantum numbers associated with these projections Jz and Iz (assuming
that B is along ẑ) are not good quantum numbers. In contrast, the projection

of ~F along ~B is constant in time and so Fz is a good quantum number.
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about ~F , their projections along ~B (the quantization axis) changes in time.

Therefore the quantum numbers associated with these projections Jz and Iz

(assuming that B is along ẑ) are not good quantum numbers. In contrast,

the projection of ~F along ~B is constant in time and so Fz is a good quantum

number. Therefore the Zeeman Hamiltonian (Eq. 2.20) can be written in a

more useful form, in this case, by taking the projection of ~J and ~I along ~F

HZE = µB

(

gJ
〈~F · ~J〉F · B
F (F + 1)

+ gI
〈~F · ~I〉F · B
F (F + 1)

)

, (2.21)

where the terms in the angled brackets refer to an expectation value. This can

be written more compactly as

HZE = µBgF FzB, (2.22)

where B has been taken along ẑ and gF is given by

gF = gJ
〈~F · ~J〉

F (F + 1)
+ gI

〈~F · ~I〉
F (F + 1)

. (2.23)

The expectation values can be written in a more illuminating manner; for

example 〈~F · ~J〉 can be rewritten using the following relation

~F + ~J = ~I + 2 ~J. (2.24)

Squaring both sides of this equation and using

~I · ~J =
1

2
(F 2 − I2 − J2) (2.25)

reveals

〈~F · ~J〉 =
F 2 + J2 − I2

2
. (2.26)
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Following the same logic leads to a similar equation for the second expectation

value

〈~F · ~I〉 =
F 2 + I2 − J2

2
. (2.27)

If these terms are collected and evaluated in the coupled basis |I, J, F, Fz〉

one finds

gF = gJ
F (F + 1) − I(I + 1) + J(J + 1)

2F (F + 1)
+gI

F (F + 1) + I(I + 1) − J(J + 1)

2F (F + 1)
.

(2.28)

This still leaves the problem of determining gJ and gI . The latter

accounts for the complex structure of the nucleus and so its value is found

experimentally. The value of gJ , however, can be found in a manner very

similar to that used to find gF , the difference being that one must consider

the coupling between ~S and ~L and take the projection of these vectors along

~J . The result is

gJ = gL
J(J + 1) − S(S + 1) + L(L + 1)

2J(J + 1)
+gS

J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
,

(2.29)

where gS and gL are the electron spin and electron orbital “g-factors.”

The value of each of the “g-factors” considered above are listed in Ta-

ble 2.3. The value of gS is known extraordinarily well and its measurement [52]

has served as an important test of QED theory [53]. The value of gL quoted

is derived from

gL ≈ 1 − me

mnuc

(2.30)

37



where mnuc is the nuclear mass. This value differs slightly from 1 due to finite

nuclear mass and is correct to lowest order in me/mnuc [54]. The value of gI

accounts for the complicated structure of the nucleus and is an experimental

value [45]. Finally, the values listed for gJ are all experimental values [45], the

exception being the value given for the state 52P1/2 which is calculated from

theory.

gS 2.002 319 304 3622(15)
gL 0.999 993 69
gI −0.000 995 141 4(10)

gJ(52S1/2) 2.002 331 13(20)
gJ(52P1/2) 2/3
gJ(52P3/2) 1.336 2(13)

Table 2.3: 87Rb D2 Transition “g-factors”

The expression for gJ given in Eq. 2.29 can be simplified by taking the

approximate values gS ≈ 2 and gL ≈ 1 yielding,

gJ ≈ 3

2
+

S(S + 1) − L(L + 1)

2J(J + 1)
. (2.31)

Likewise a simplification the expression for gF , given in Eq. 2.28, can be made

by neglecting the nuclear term

gF ≈ gJ
F (F + 1) − I(I + 1) + J(J + 1)

2F (F + 1)
, (2.32)

yielding an expression which is still correct to the 0.1% level.

As an example consider the F = 1 manifold in ground state 87Rb (see

Fig. 2.1). In this state S = 1/2, L = 0, J = 1/2, I = 3/2 and F = 1 so
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gF = −1/2 using the approximate expressions for this value and for gJ derived

above. In the low field limit, the magnetic sublevels will shift in energy in

response to an external magnetic field according to

∆EZE = µBgF mF B. (2.33)

Recall that because F = 1, mF can take on the values of −1, 0, and 1.

This splitting is shown in Fig. 2.3 and is the basis for magnetically trapping

neutral atoms, the topic of the next section. Note that because the value of gF

in negative in this state, the sublevel with mF = −1 increases in energy with

increasing magnetic field while the sublevel with mF = 1 decreases in energy.

The sublevel with mF = 0 is unaffected to first order by the presence of the

external magnetic field.

52S1/2(F=1)

E

B

   

mF=-1 

mF=0 

mF=1

Figure 2.3: Zeeman spitting of the F = 1 hyperfine manifold. Because F = 1,
mF can take on the values −1, 0, and 1. The value of gF in this state is −1/2
so the magnetic sublevel with mF = −1 increases in energy with increasing
magnetic field while the sublevel with mF = 1 decreases in energy. The energy
of the mF = 0 sublevel is unaffected to first order.

39



2.4 Magnetic Trapping

The Zeeman effect can be used to spatially confine neutral atoms. This

feat was first accomplished in 1985 on a sample of neutral atomic sodium

[9]. This can be understood by a quite straightforward extension of the main

result of the previous section where it was shown that in the low field limit an

external magnetic field shifts the magnetic sublevels of an atom by an amount

given by

∆EZE = µBgF mF |B|. (2.34)

This shift in energy is correctly viewed as a confining potential for the atoms,

the force on which is found from taking the gradient of this expression.

~FZE = −µBgF mF (∇|B|) (2.35)

In the previous two equations I have been explicit that it is the mag-

nitude of the magnetic field which is important and not the vector quantity.

The reason for this is that under certain conditions, which are met in our trap

almost everywhere, the atomic magnetic moments follow the direction of the

confining magnetic field. The condition for this adiabatic following can be

written as ωL ≫ |dB/dt|/B, where ωL = µB/~ is the Larmor precession rate

in the applied magnetic field. If this condition is not met, it can result in trap

loss via a process known as Majorana spin flips.

Examination of Eqs. 2.34 and 2.35 reveals that there are two main

classes of atomic states with respect to magnetic trapping. The first, com-

monly called high-field seeking states, satisfy gF mF < 0 and therefore mini-
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mize their energy in high magnetic fields. The second, called low-field seeking

states, satisfy gF mF > 0 and minimize their energy in magnetic field min-

ima. Earnshaw’s theorem prohibits an electrostatic field from stably trapping

a charged particle, however it does not rule out the possibility of trapping

a dipole [38]. Clearly, for a trap to be stable atoms must accumulate at a

field extrema, but local maxima in the absence of sources are forbidden by

Maxwell’s equations [55]. Therefore atoms must be trapped at a local field

minimum, so low-field seeking atomic states must be used.

Ground state 87Rb has three low-field seeking states. They are |2, 2〉,

|2, 1〉 and |1,−1〉, where the notation |F,mF 〉 is being used. The term “ground

state” refers to all of the states contained in the 52S1/2 spectroscopic term,

not just the one with the lowest energy. The state |2, 2〉 couples most strongly

to external magnetic fields, providing the tightest confinement for a given

magnetic field. For this reason we trap 87Rb atoms in this state.

One may worry that this state is not the lowest in energy and may decay

into the F = 1 manifold, disrupting the experiment. This concern can be put

to rest because this is not an allowed electric dipole transition as ∆L = 0

and so the lifetime of atoms in the F = 2 manifold is much longer than the

duration of the experiment.

While there are many electric current configurations which can form

suitable trapping potentials [56] we use the simplest configuration possible.

Our field is produced from a pair of circular coils with counter-propagating

currents. This geometry is known as the anti-Helmholtz configuration and it
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produces a quadrupole magnetic field.

The form of the magnetic field produced in this configuration can be

arrived at by first considering the form of the magnetic field produced by a

single circular loop carrying a current I in a region of permittivity µ which is

given by [56]

Bz =
µI

2π

1
√

(R + ρ)2 + (z)2

[

K(k2) +
R2 − ρ2 − z2

(R − ρ)2 + z2
E(k2)

]

(2.36a)

Bρ =
µI

2πρ

z
√

(R + ρ)2 + (z)2

[

−K(k2) +
R2 + ρ2 − z2

(R − ρ)2 + z2
E(k2)

]

(2.36b)

where

k2 =
4Rρ

(R + ρ)2 + z2
(2.37)

and K(k2) and E(k2) are the complete elliptic integrals of the first and second

kind, respectively [57]. The terms in this expression are clarified in Fig. 2.4.

R

x

y

z

loop of current

r

z

(r,z)

B
z
(r,z)

B
r
(r,z)

Figure 2.4: Geometry of Eq. 2.36. The red loop of current produces a magnetic
field at the point (ρ, z). The magnetic field is decomposed into components
parallel to ẑ and to ρ̂.
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If we now consider the field from two such loops separated by a distance

d with equal but opposite current we can arrive at the expression for the

magnetic field in the anti-Helmholtz configuration. The full mathematical

form is not very illuminating, but a plot of the result is shown in Fig. 2.5. This

figure shows the magnitude of the magnetic field along the axis of symmetry

of the two loops. The central portion of this potential is used for trapping.

Note that near the center the potential is nearly linear, deviating only in

the vicinity of the current carrying loops, at the surface of which the field

magnitude reaches its maximum value.

z

|B|

Figure 2.5: Magnitude of the magnetic field along the symmetry axis of the two
loops. The central portion of the potential is used for trapping. The potential
is approximatly linear near the center and reaches its maximum value at the
surface of the circular loops of current.

Luckily, we can justify making a huge simplification because the trapped

atoms in this experiment only occupy the region near the center of the trap.

43



We can therefore Taylor expand the full solution and take only the leading,

linear term. The result of this expansion and simplification is

Bz = 2B′z (2.38a)

Bρ = B′ρ (2.38b)

where the field gradient B′ is

B′ =
3

2
µI

(d/2)R2

[(d/2)2 + R2]5/2
. (2.39)

For magnetic trapping the magnitude of the field is the important quantity. It

is given by

B = B′
√

ρ2 + 4z2. (2.40)

Note that this potential is linear in all radial directions, however the

gradient varies along each direction because of the factor of 4 in Eq. 2.40. Also

this potential is not harmonic nor central, and so angular momentum is not

conserved in this trap.

The main source of trap loss is collisions between trapped atoms and

the residual thermal background gas present in our vacuum chamber. Unfor-

tunately, the cross section for destructive collisions is large because even large

impact parameter collisions can impart enough energy to eject atoms from our

trap. At pressures P , which are low enough to be of practical interest, the

trapping time can be approximated by [38]

t ∼ (10−8/P ) s (2.41)
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where P is in torr. The lifetime of atoms in our magnetic trap is ∼ 30 s,

suggesting that the background pressure is ∼ 3 × 10−10 torr.

2.5 Interaction of Light with Atoms

Interactions of light with atoms fall into two very broad regimes. In

the first, the so called far-detuned regime, the frequency of light is far from

any atomic resonance. The primary effect of the light is to mix states of

opposite parity, inducing a dipole moment in the atom [58]. The induced

dipole moment can then interact with an optical intensity gradient present in

the dipole inducing beam. As will be discussed, this situation can lead to an

almost completely conservative optical trap for neutral atoms. In the second,

near-resonant regime, light interacts with atoms primarily through forces due

to photon scattering. As will be explored in some detail, this regime can be

used to cool and trap atomic ensembles.

2.5.1 The Optical Dipole Force

The use of the optical dipole force for confining atoms was first consid-

ered by Askar’yan in 1962 [59]. Eight years later Ashkin trapped micron-sized

particles with a laser using a combination of radiation pressure and the opti-

cal dipole force [60]. He later suggested a 3-D trap for neutral atoms based

on his previous work [61]. In 1978 Bjorkholm experimentally demonstrated

the dipole force by focusing a beam of neutral atoms [62]. These ideas and

work culminated in 1986 with the first optical dipole trap for neutral atoms
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demonstrated by Chu et al. [63].

To model the dipole force, let the applied electric field and induced

dipole moment be given as

~E(~r, t) = ê Ẽ(~r)e−iωt + c.c. (2.42)

~p(~r, t) = ê p̃(~r)e−iωt + c.c. (2.43)

where these two quantities are related through the complex polarizability α

~p = α(ω) ~E. (2.44)

The potential energy of the induced dipole in the driving electric field

is

Udip = −1

2
〈~p · ~E〉, (2.45)

where the angular brackets represents a time average and the 1/2 accounts for

the induced, not permanent, nature of the electric dipole. This can be written

in a more useful form by replacing the amplitude of the electric field with the

corresponding intensity through I = 2ǫ0c|Ẽ|2 and evaluating the time average

of the two complex quantities,

Udip = − 1

2ǫ0c
Re(α)I. (2.46)

We see that the potential is proportional to the intensity of light and

the real part of the polarizability, the latter of which represents the in-phase
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component of the dipole oscillation. The dipole force can be found from the

gradient of the potential energy and is therefore a conservative field.

~Fdip = −∇Udip(~r) =
1

2ǫ0c
Re(α)∇I(~r) (2.47)

Thus the optical dipole force comes from the dispersive interaction of the

induced dipole moment with the gradient of the driving light field [59, 64–66].

We now turn our attention to modeling α which we do following Lorentz’s

model of a classical oscillator. In this model the electron is considered to be

a classical particle bound elastically to a nucleus and possessing an oscillation

frequency ω0 which is identified with the frequency of the optical transition

of interest. Damping is included in this model through Larmor’s formula for

the power radiated by an accelerating charge [67]. This model has several

limitations - it does not model an atom with multiple transitions and does

not display any saturation behavior when strongly driven. In the far-detuned

limit neither of these limitations are of concern.

The equation of motion for a damped, driven harmonic oscillator

ẍ + ΓLẋ + ω2
0x = −eE(t)

me

(2.48)

can be used to solve for α by noting that p = −ex = αE. The result is

α =
e2

me

1

ω2
0 − ω2 − iωΓL

, (2.49)

where the damping coefficient ΓL is the classical Larmor energy damping rate

due to radiative loss

ΓL =
e2ω2

6πǫ0mec3
. (2.50)
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Using this relation and introducing the on-resonance damping rate Γ ≡ Γω0
=

(ω0/ω)2ΓL allows the polarizability to be written as [68]

α = 6πǫ0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω3

0)Γ
. (2.51)

Interestingly, the semi-classical approach which treats the atom as a

two-level quantum system interacting with a classical field yields the same

result in the low-saturation limit with one notable exception. The damping

rate must be found from the dipole matrix element between the ground and

excited state.

Γ =
ω3

0

3πǫ0~c3
|〈e|µ|g〉|2 (2.52)

But for the D lines in alkali atoms, including 87Rb, which are strongly allowed

dipole transitions the classical estimation agrees with the true decay rate to

within a few percent [68].

Using the classical estimation for α in the equation for the dipole po-

tential (Eq. 2.46) yields a very useful result, valid in the limit of large detuning

and negligible saturation

Udip(~r) =
3πc2

2ω3
0

Γ

∆
I(~r). (2.53)

Here ∆ ≡ ω − ω0 is the optical detuning from resonance. Udip is inversely

proportional to the optical detuning which can take on both positive and neg-

ative values. When ω > ω0, so-called blue-detuning, the potential is positive,

and atoms experience a repulsive force pushing them away from local intensity

maxima. When ω < ω0, so-called red-detuning, atoms are pulled into local
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maxima. Our experiment makes extensive use of blue-detuned optical sheets

which act as repulsive walls. We combine several of these sheets to form op-

tical boxes for trapping atoms. Specific detail on this technique can be found

in Ch. 4.

Although not derived here, a very similar consideration leads to an

expression for the optical scattering rate valid in the same limits as Eq. 2.53

[68].

Γsc(~r) =
3πc2

2~ω2
0

(

Γ

∆

)2

I(~r) (2.54)

Notice that the scattering rate varies as ∼ 1/∆2, so that for a sufficiently large

detuning the optical dipole force completely dominates forces due to optical

scattering.

2.5.2 Scattering Forces

When an optical field is near an atomic resonance it is scattering forces

that dominate the atom-light interaction. The non-conservative nature of the

spontaneous scattering process means that radiative forces can be used to cool

atomic ensembles. Here I will discuss the scattering rate and resulting force

in the semi-classical approximation, treating the atom as a two-level quantum

system and the optical field as classical. I will then shows how this is used to

cool and confine atoms in our experiment.
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2.5.2.1 Optical Bloch Equations

The optical Bloch equations are used to describe an ensemble of two-

level atoms interacting with a monochromatic optical field [69] as shown in

Fig. 2.6. To describe the situation in the figure we must find the expectation

1

2

1

2

E
0
(r)e

-iωt
 + c.c.

1

2

Figure 2.6: Ensemble of N two-level atoms per unit volume interacting with a
monochromatic optical field.

value

〈~µ(t)〉 =

∫

Ψ∗ ~µ Ψd3r (2.55)

of the microscopic polarization operator ~µ = −e~r by solving Schrödinger’s

equation,

i~
∂Ψ

∂t
= HΨ. (2.56)

Here H = H0+Hcoh+Hdamp is the sum of the unperturbed atomic Hamiltonian

H0, the Hamiltonian describing the coherent evolution of the atom driven by

the optical field Hcoh = −~µ · ~E(t) and the Hamiltonian due to inter-atomic

damping processes such as collisions. The inclusion of the third term means

that we must consider the system as a quantum ensemble, not as individual

atoms. Because the system we are describing comprises a large number of
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atoms its wavefunction Ψ(t) is typically intractable. Instead we use the density

matrix formalism which provides a convenient way of describing the evolution

of the ensemble average expectation value of the dipole operator 〈µ(t)〉 even

when Ψ(t) is unknown.

The density matrix can be defined in two steps. In the first step, we

consider the expectation value of the dipole operator for a single atom

〈µ(t)〉 = 〈Ψ(~r, t)|µ|Ψ(~r, t)〉. (2.57)

We then expand Ψ(~r, t) in a complete set of orthonormal eigenfunctions of the

unperturbed atomic Hamiltonian H0

Ψ(~r, t) =
∑

n

cn(t)un(~r), (2.58)

where all of the time dependence has been placed in the coefficients cn(t). We

then evaluate the expectation value of the dipole operator in this basis

〈µ(t)〉 =
∑

m,n

c∗m(t)〈um(~r)|µ|un(~r)〉cn(t). (2.59)

By defining µmn ≡ 〈um(~r)|µ|un(~r)〉 and Rnm ≡ cnc
∗
m this can be written much

more compactly as

〈µ(t)〉 =
∑

m,n

Rnmµmn =
∑

n

(Rµ)nn = Tr(Rµ). (2.60)

Next we apply this approach to an atomic ensemble. To do so we define

ρnm(t) ≡ Rnm(t), (2.61)
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so that the ensemble average expectation value of the dipole operator can be

expressed as

〈µ(t)〉 =
∑

m,n

cnc∗mµmn = Tr[ρ(t)µ]. (2.62)

The density matrix has four elements in this case because we have

assumed a two-level system,

ρ =

(

ρ11 ρ12

ρ21 ρ22

)

. (2.63)

The diagonal elements represent the probability of finding an atom in the

respective state i.e. ρ11 is the probability of finding an atom in state |1〉. The

significance of the off-diagonal elements can be seen by calculating 〈µ(t)〉 for

our two level system. The result is

〈µ(t)〉 = ρ12µ21 + ρ11µ11 + ρ22µ22 + ρ21µ12. (2.64)

If we assume that each state |1〉 and |2〉 has definite parity and note that

the dipole operator µ has odd parity symmetry then we see immediately that

µ11 = µ22 = 0. Additionally if we assume, with no loss of generality, that

µ21 = µ12 ≡ µ then we can write the very illuminating formula

〈µ(t)〉 = µ[ρ12(t) + ρ21(t)], (2.65)

which shows that the sum of off-diagonal elements, known as the coherence

terms, is proportional to the ensemble average dipole moment.

We are now in a position to derive the optical Bloch equations. The

temporal evolution of the operator ρ is determined by the Heisenberg equation

ρ̇ =
1

i~
[H, ρ]. (2.66)
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In this equation we let H = H0 + Hcoh and neglect Hdamp because its exact

form is unknown and its effect can be added in later by hand. With this

approximation we find the time evolution of the off-diagonal elements to be

ρ̇21 = −iω0ρ21 + i
µE(t)

~
(ρ11 − ρ22) (2.67)

with ˙ρ12 = ˙ρ21
∗. The diagonal elements are found to be

ρ̇11 = −µE(t)

i~
(ρ21 − ρ12) = −ρ̇22. (2.68)

Damping is a property of the interaction between individual dipoles

and is therefore a property of the ensemble and not individual atoms. Damp-

ing can be included phenomenologically in the off-diagonal elements from the

knowledge that when E(t) → 0 the ensemble average dipole moment must

decay to 0. There are many causes of dephasing which lead to the decay of

the off-diagonal element such as population relaxation, collisions, and dipole-

dipole interactions, the net effect of which can be encompassed in a transverse

decay rate 1/T2. Likewise, processes such as spontaneous decay and collisional

de-excitation lead to the decay (growth) of the excited (ground) state popu-

lation. The rate of these processes can be encompassed by the longitudinal

decay rate 1/T1.

Before including the effects of damping in the optical Bloch equations,

I would like to briefly discuss the commonly used rotating wave approxima-

tion, which is a result of writing the off-diagonal elements as a slowly varying

envelope function multiplied by a response at the applied optical frequency.

ρ21(t) = σ21(t)e
−iωt = ρ∗

12(t) (2.69)
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When these expressions are substituted into the optical Bloch equations and

terms proportional to e−iωt are equated while terms proportional to e−2iωt are

discarded, the equations take on their familiar form.

ρ̇11 =
iΩ

2
(σ12 − σ21) +

ρ22

T1

(2.70a)

ρ̇22 = −iΩ

2
(σ12 − σ21) −

ρ22

T1

(2.70b)

σ̇12 = −(
1

T2

+ i∆)σ12 −
iΩ

2
(ρ22 − ρ11) (2.70c)

The off-diagonal terms are complex conjugates of each other σ̇21 = σ̇∗
12, the

detuning of the applied field from resonance is denoted ∆ ≡ ω − ω0, and

Ω = −~µ · ~E0/~ is the Rabi frequency.

If we assume that radiative decay is the only dephasing process then

1/T1 = Γ and 1/T2 = Γ/2, where Γ is the natural decay rate of the excited

state. With this assumption, the steady state solution of the excited popula-

tion is

ρ22 =
(Ω/Γ)2

1 + 4(∆/Γ)2 + 2(Ω/Γ)2
. (2.71)

This can be put in a more useful form for experimentalists by introducing the

transition saturation intensity Isat

I

Isat

= 2
Ω2

Γ2
(2.72)

so that we may write

ρ22 =
1

2

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
. (2.73)
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The significance of Isat is that at saturation the Rabi frequency has a value

comparable to the natural decay rate Γ and that ρ22 reaches 1/2 of its max-

imum value. With the substitution I = (1/2)cǫ0E
2
0 , the saturation intensity

can be written

Isat =
ǫ0cΓ

2
~

2

4|ê · ~µ|2 (2.74)

where ê is the direction of the polarization of the electric field. The value of the

saturation intensity depends on the transition strength through Γ as well as the

relative orientation of the polarization of light and transition dipole moment,

but for simplicity the minimum value is usually reported as a representative

figure. For the D2 (F = 2 → F ′ = 3) transition Isat = 3.577 13(74)mW/cm2

for light with isotropic polarization [43].

A consequence of saturation is that the measured width of a transi-

tion increases with increasing probe intensity due to a phenomena known as

saturation broadening. The measured full width at half maximum (FWHM)

increases with intensity as [70]

∆ωFWHM = Γ

(

1 +
I

Isat

)1/2

. (2.75)

2.5.2.2 Optical Molasses

Optical Molasses is a laser cooling technique commonly used to reduce

the temperature of an atomic vapor. Because atoms in a gas move in all direc-

tions the applied laser beams must cool in all three dimensions by interacting

with the gas along three orthogonal dimensions as shown in Fig. 2.7. In this
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Figure 2.7: Three pairs of counter propagating laser beams impinge on an
atom. Each beam is detuned below the atomic transition resonance by the
same amount.

figure three pairs of counter propagating beams, all at the same frequency and

intensity, interact with an atom. It might appear that this arrangement will

have no effect on the atom because the effect from counter propagating beams

will cancel. This is true for a stationary atom, but for an atom in motion the

symmetry of the arrangement is broken. The Doppler effect causes the atom

to scatter photons out of counter propagating beams at different rates, leading

to an imbalance of the force on the atom. Consider the 1-D situation depicted

in Fig. 2.8 in which each of the counter propagating beams is tuned below

the atomic resonance frequency ω0 by the same amount. If the atom moves
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ω =ω−∆− kv
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1
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Figure 2.8: 1-D optical molasses. A pair of counter propagating beams detuned
below the atomic resonance frequency impinge on an atom. (a) If the atom
is at rest then it sees each beam with equal detuning from resonance ∆ and
scatters photons out of each beam equally. (b) If the atom is in motion the
Doppler effect shift the beam opposing the atomic motion into resonance and
the atom scatters photon preferentially from this beam, slowing it.

to the right, the Doppler effect will cause the atom to scatter photons from

the leftward traveling beam at a rate greater than from the rightward travel-

ing beam. Of course the opposite effect will take place if the atoms moves to

the left. This leads to a force which tends to slow the atom regardless of its

direction of travel.

This argument can be made somewhat more quantitative by using a re-

sult from the previous section where we calculated the excited state occupation

probability for a two level atom interacting with a monochromatic beam

ρ22 =
1

2

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
.

The total scattering rate Rscatt = Γρ22 for a single atom is the product of the
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excited state occupation probability and the natural decay rate

Rscatt =
Γ

2

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
. (2.76)

Since each photon scattered carries momentum ~k the force on the atom due

to this process is

Fscatt = ~k
Γ

2

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
. (2.77)

We can use this result and the first order Doppler shift ω′ = ω − kv,

where ω′ is the frequency seen by an atom moving at velocity v with respect to

a laser beam at frequency ω, to find the force on the atom in this arrangement.

If we consider the 1-D case, with a single pair of counter propagating beams,

then the total force is just the sum of forces due to each beam

Fmolasses = Fscatt(ω − ω0 − kv) − Fscatt(ω − ω0 + kv). (2.78)

We can approximate this result for small velocities through Taylor expansion

of Fscatt

Fmolasses ≈ Fscatt(ω −ω0)− kv
∂F

∂ω
− [Fscatt(ω − ω0 + kv)] ≈ −2

∂F

∂ω
kv. (2.79)

We note that this may be written

Fmolasses = −αv, (2.80)

showing that this force mimics classical viscous damping, the reason it is called

optical molasses. The value of α is found through differentiation of Eq. 2.77

to be

α = 4~k2 I

Isat

−2∆/Γ

[1 + (2∆/Γ)2]2
, (2.81)
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where I/Isat ≪ 1 has been assumed. Clearly for damping to occur α > 0 so

the detuning ∆ = ω − ω0 < 0 is negative, in agreement with the qualitative

picture presented earlier.

There are two features of optical molasses that warrant explicit state-

ments. First, optical molasses only confines atoms in velocity and not config-

uration space. In other words, it is a cooling and not a trapping technique.

Second, even though Eq. 2.80 suggests that after sufficient time v → 0 hence

T → 0 this is clearly not a physical result. This discussion ignored heating

effects due to the random nature of the absorption and spontaneous emission

process. The heating and cooling effects of optical molasses reach a balance

at the Doppler temperature [70]

TD =
~Γ

2kB

. (2.82)

This temperature is the lowest value that one expects to cool a two-level

system. However, due to magnetic substructure the temperature achieved

in experiments are much lower. The effect responsible for this is the topic of

the next section.

2.5.2.3 Sisyphus Cooling

As discussed in Sec. 1.1, many groups, most notably the group of W.

Phillips, measured temperatures of atomic clouds cooled by optical molasses to

be well below the Doppler limit given in Eq. 2.82. This cannot be understood

in terms of the simple two-level system used in that discussion. Jean Dalibard
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and Claude Cohen-Tannoudji discovered that cooling beyond the Doppler limit

was due to an interaction between the optical field and the atom’s magnetic

sublevels [12].

The effect responsible for the additional cooling can be understood by

considering an atom with a ground state total electronic angular momentum

J = 1/2 and an excited state total electronic angular momentum J ′ = 3/2

moving through a standing wave formed by two counter-propagating beams

with orthogonal linear polarization.

As indicated in Fig. 2.9(a) the relative strength of the transitions de-

pend on the value of mJ in the lower (J = 1/2) and upper (J ′ = 3/2) state.

For example, for σ+ polarized light, which by definition drives transitions with

∆mJ = +1, the coupling of the|J = 1/2,mJ = 1/2〉 → |J = 3/2,mJ = 3/2〉

transition is three times stronger than the coupling of the |J = 1/2,mJ =

−1/2〉 → |J = 3/2,mJ = 1/2〉 transition. On the contrary, for σ− polar-

ized light, which drives transitions with ∆mJ = −1, the coupling of the |J =

1/2,mJ = −1/2〉 → |J = 3/2,mJ = −3/2〉 transition is three times stronger

than the coupling of the |J = 1/2,mJ = 1/2〉 → |J = 3/2,mJ = −1/2〉 transi-

tion. The relative strength of all allowed electric dipole transition are given as

integer values in this figure and can be calculated using the formalism outlined

in Sec. 2.6.
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Figure 2.9: The Sisyphus cooling effect. (a) The relative coupling strength
of all allowed electric dipole transitions are shown as integer values. (b) The
standing wave formed by two counter-propagating beams with orthogonal lin-
ear polarizations results in a polarization gradient. (c) The ground state energy
levels are shifted periodically by the polarization gradient.

The result of the superposition of the counter-propagating beams with

orthogonal linear polarization is a standing wave with a spatially varying po-

larization. This is indicated in Fig. 2.9(b) where a beam traveling to the
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right and polarized along x̂ superposes with a beam traveling in the oppo-

site direction polarized along ŷ. The local polarization depends on the rel-

ative phase difference between the two beams and varies from σ+ to σ− in

a distance ∆z = λ/4. This polarization gradient causes a spatial, periodic

modulation of the energy of each of the ground states |J = 1/2,mJ = 1/2〉

and |J = 1/2,mJ = −1/2〉 of different magnitude given roughly by Eq. 2.53.

For example, consider a location at which the local polarization is σ+. If

the laser beams are tuned below the atomic resonance frequency then both

ground states will be shifted downwards in energy, however because the cou-

pling between the |J = 1/2,mJ = 1/2〉 and |J = 3/2,mJ = 3/2〉 state is

stronger, this ground state is shifted downward more. Conversely, at locations

where the light has σ− polarization the ground state |J = 1/2,mJ = −1/2〉 is

shifted downward in energy more. These two states oscillate in energy along

the polarization gradient as shown in Fig. 2.9(c).

If these energy level shifts (known as light shifts) were the only effect

the light had on the atoms then we would expect the atoms to exchange

potential and kinetic energy as they traveled over the potential hills, but we

would not expect any further cooling to take place due to the light. However

the light does effect the atoms in another way, it optically pumps them in

a spatially dependent way. For example, consider what happens to an atom

initially in the |J = 1/2,mJ = −1/2〉 state located at a position with σ+ light

polarization. After being excited into the |J = 3/2,mJ = 1/2〉 state it has

two modes of decay. If it decays back into the |J = 1/2,mJ = −1/2〉 state the
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process repeats. If however, it decays into the |J = 1/2,mJ = 1/2〉 state then

it is trapped in a cycling transition and has no way of returning to the |J =

1/2,mJ = −1/2〉 state. Note that the atom initially in the |J = 1/2,mJ =

−1/2〉 state climbed a potential hill to reach the region of σ+ polarization

where it was optically pumped into the |J = 1/2,mJ = 1/2〉 state which has

lower energy due to a larger downward light shift. The atom therefore lost

the energy it used to climb the potential hill when it was transfered into the

other ground state. This excess energy is carried away by the spontaneously

emitted photon which has a higher frequency than the photon which excited

the atom into the J ′ = 3/2 manifold. After decay, the atom finds itself at the

bottom of a potential valley in the |J = 1/2,mJ = 1/2〉 state. If it climbs to

the top of this potential valley it will be in a region of σ− polarization and

will be pumped into the |J = 1/2,mJ = −1/2〉 state losing more energy in the

process. This repeated cycle of climbing a potential hill only to be pumped

into a valley is called the ‘Sisyphus’ effect after a character in Greek mythology

condemned by the gods to a similar fate.

This simple picture suggests that this cooling mechanism works until

the atoms no longer have sufficient energy to climb the potential hills and are

stuck in the valleys. A final temperature can be estimated with this picture

in mind [70]

kBT ≈ Udip ∝
I

|∆| . (2.83)

where Udip can be estimated from Eq. 2.53. Of course this technique also

has a limit and cannot be used to cool atoms to 0 K as ∆ → 0 . When the
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energy increase due to the recoil from the spontaneous decay process equals

the energy removed from the Sisyphus effect then equilibrium is reached, this

occurs at the recoil temperature.

Tr =
~

2k2

mkB

The Sisyphus effect typically results in atomic samples being cooled to a few

times the recoil temperature, which for 87Rb is 362.96 nK.

2.5.2.4 Magneto-Optical Trap

As discussed in Sec. 2.5.2.2, spontaneous light forces can be used to

confine atoms in velocity space if beams are arranged appropriately and tuned

slightly below the atomic resonance frequency. Unfortunately, optical mo-

lasses does not confine atoms spatially. However, with the correct choice of

beam polarizations and the addition of a magnetic field gradient, a hybrid

magneto-optical trap (MOT) can be formed which both cools and confines

atomic samples. The idea of this extremely useful trap was proposed in 1986

[71] and demonstrated the following year [10]. Since then MOTs have become

the most widely used cold atom trap. In fact, our experiment uses two separate

MOTs to operate, as discussed in Ch. 3.

Figure 2.10 shows the typical geometry of a MOT. Just like the arrange-

ment in optical molasses, the MOT uses three pairs of counter-propagating

beams tuned slightly below the atomic resonance frequency. In this case how-

ever, the beams must be chosen to have opposite circular polarization for
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Figure 2.10: Geometry of the magneto-optical trap (MOT). Three orthogonal
pairs of counter-propagating beams overlap in the region of a magnetic field
gradient. The beams in each pair have opposite circular polarization. The
magnetic gradient is produced by two coils (shown in yellow) in the anti-
Helmholtz configuration.

reasons which will become clear shortly. Additionally, a magnetic field gradi-

ent must be introduced into the system, in Fig. 2.10 and our experiment this

is done with two coils in the anti-Helmholtz configuration, illustrated as two

yellow tori. As discussed in Sec. 2.4 this coil geometry produces a quadrupole

field with a linear gradient near the magnetic field center. In contrast to pure

magnetic trapping, the magnetic field gradients used in MOTs are often too

small to confine atoms-instead the gradient causes an imbalance in the scatter-

ing rate for atoms displaced from the magnetic field center and this scattering
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force confines the atoms.

The principle of the MOT is illustrated in Fig. 2.11 for the simple

case of an atom with a ground state with J = 0 and an excited state with

J = 1 in a 1-D geometry. Due to the symmetry of the coils the magnetic field

J = 0

J = 1

m
J

m
J

1

0

-1

1

0

-1

w

∆
∆+

∆−

σ-σ+

z

E

Figure 2.11: A 1-D magneto-optical trap for the simple case of a J = 0 →
J = 1 transition. A linear magnetic gradient shifts the energy of the J = 1
Zeeman sublevels linearly with position along ẑ. A pair of counter-propagating
beams with opposite circular polarization tuned below the atomic resonance
frequency impinge on the atom. An atom located at z = z′ has its Zeeman
sublevels shifted such that the mJ = −1 sublevel is closer to atomic resonance
than the mJ = 1 sublevel. This causes the atom to scatter photons out of the
σ− beam at a greater rate than out of the oppositely traveling beam. The net
force pushes the atom back towards the center of the trap.

vanishes at the center of the pair. Near the field zero the field increases linearly.

The magnetic field perturbs the energy of the Zeeman sublevels causing them
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to vary linearly with position along ẑ. The counter-propagating beams are

tuned below the atomic resonance by an amount ∆ and have opposite circular

polarizations as shown in the figure. To see how this leads to a trap based

on imbalanced scattering rates consider an atom displaced from the center

of the trap to a position z = z′. At this location the magnetic field causes

the Zeeman sublevel mJ = −1 to be brought closer into resonance with the

atomic transition while bringing the mJ = 1 sublevel further from resonance.

The detuning of each of these states from resonance is indicated by ∆− and

∆+ respectively, with ∆+ > ∆−. Transition selection rules then indicate that

the atom will scatter at a greater rate from the σ− beam, pushing it back

towards the center. If the atom is displaced in the opposite direction then

the Zeeman shift in the sublevels will cause it to scatter preferentially out of

the σ+ beam, again pushing back towards the center. Of course with the 3-D

geometry shown in Fig. 2.10 any displacement from the trap center will lead

to a restoring force. Additionally, the red detuning of the beams causes the

atoms to cool according to the discussion of optical molasses, therefore MOTs

both confine and cool atomic ensembles.

We can describe the simple 1-D situation more quantitatively by in-

cluding the Zeeman shift into Eq. 2.78, which was used to describe optical

molasses

FMOT = F σ+

scatt[ω − kv − (ω0 + βz)] + F σ−

scatt[ω + kv − (ω0 + βz)], (2.84)

where β is the magnetic field gradient. This can be approximated near the
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trap center through a Taylor expansion yielding

FMOT ≈ −2
∂F

∂ω
kv + 2

∂F

∂ω0

βz (2.85)

where the Zeeman shift at a displacement z is

βz =
gµB

~

dB

dz
z. (2.86)

As before, the scattering force (Eq. 2.77) depends on the frequency detuning

∆ = ω − ω0, so ∂F/∂ω0 = −∂F/∂ω so that these two terms can be combined

and written as

FMOT = −2
∂F

∂ω
(kv + βz). (2.87)

This can be brought into a particularly simple form by introducing the variable

α originally defined in the discussion of optical molasses

FMOT = −αv − αβ

k
z. (2.88)

This form emphasizes that the imbalance in the scattering rates caused

by the Zeeman shift in energy levels leads to a restoring force with a spring

constant αβ/k. In typical experimental situations the atom undergoes strongly

over-damped motion.

2.6 Branching Ratios

During the course of the single-photon cooling process 87Rb atoms are

excited from the |F = 2,mF = 2〉 state into the |F ′ = 1,mF = 1〉 state

from where they spontaneously decay. Electric dipole selection rules, ∆F =
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0,±1 and ∆mF = 0,±1, allow excited atoms to decay into any of the states

|F = 2,mF = 0, 1, 2〉 and |F = 1,mF = 0, 1〉. Not all of these final state are

trappable so knowledge of the spontaneous decay branching ratios is important

to aid in understanding the efficiency of this cooling technique. The relative

decay rates can be calculated with the help of the Wigner-Eckart theorem [51,

72–74] which states that the matrix element of an irreducible tensor operator

T κ
q between states of a general angular momentum basis is given by the product

of a constant independent of the magnetic quantum numbers (m,m′, q) and

an appropriate Clebsch-Gordan coefficient [58]:

〈ξ′, j′,m′|T κ
q |ξ, j,m〉 =

〈ξ′, j′||T κ||ξ, j〉√
2j′ + 1

〈j,m, κ, q|j′,m′〉 (2.89)

where κ is the rank of the tensor operator and q labels its component in the

spherical basis. The quantity j represents a general angular momentum and

m is its projection along the quantization axis. The quantity indicated by the

double bars

〈ξ′, j′||T κ||ξ, j〉 (2.90)

is known as a reduced matrix element.

The value of the Wigner-Eckhart theorem is that it allows the factor-

ization of matrix elements into two terms, one of which, the reduced matrix

element, depends only on the physical observable of interest and the other,

the Clebsch-Gordan coefficient, depends only on the orientation of the physi-

cal observables with respect to the quantization axis. This is extremely useful

because if one is able to find the value of one matrix element, then this the-
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orem can be used to find all of the others which differ only in the values of

m,m′ and q.

We can use the Wigner-Eckhart theorem to factor the electric dipole

transition matrix element between two hyperfine states into two terms.

〈F,mF |µq|F ′,m′
F 〉 = 〈F ||µ||F ′〉〈F,mF |F ′, 1,m′

F , q〉 (2.91)

This can be rewritten using the more symmetrical Wigner 3-j symbols which

are related to the Clebsch-Gordan coefficients in the following way [75–77]

〈F,mF |F ′, 1,m′
F , q〉 = (−1)F ′−1+mF

√
2F + 1

(

F ′ 1 F
m′

F q −mF

)

(2.92)

as

〈F,mF |µq|F ′,m′
F 〉 = 〈F ||µ||F ′〉(−1)F ′−1+mF

√
2F + 1

(

F ′ 1 F
m′

F q −mF

)

.

(2.93)

This reduced matrix element can be further reduced by using the Wigner-

Eckart theorem once more to factor out the F and F ′ dependence into a Wigner

6−j symbol.

〈F ||µ||F ′〉 = 〈J ||µ||J ′〉(−1)F ′+J+1+I
√

(2F ′ + 1)(2J + 1)

{

J J ′ 1
F ′ F I

}

.

(2.94)

The values of the 3-j and 6−j symbols are tabulated in [78] and can also be

found from the built in functions ThreeJSymbol[] and SixJSymbol[] in the

program Mathematica.

These formulas can be used to find the spontaneous decay branching

ratios from the excited state |F ′ = 1,mF = 1〉 which are shown in Fig. 2.12. In
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this figure only the relevant hyperfine manifolds are shown. The decay modes

F = 2

F = 1
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Figure 2.12: Decay mode branching ratios for an atom decaying from the
|F ′ = 1,mF = 1〉 state. The allowed spontaneous electric dipole transitions
are indicated by red arrows. The value next to each arrow indicates the relative
strength of each transition.

allowed by a spontaneous electric dipole transitions from the |F ′ = 1,mF = 1〉

state are indicated by red arrows. The value next to each arrow indicates

the relative strength of the transition. When single-photon cooling is applied

to 87Rb only those atoms which decay into the |F = 1,mF = 0〉 state are

considered when calculating quantities related to the cooling process, such as

the final phase space density.

The absolute value of any D2 transition can be found as a multiple of

〈J = 1/2||µ||J ′ = 3/2〉 which is determined from the natural lifetime of the
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excited state through the relation

1

τ
=

ω3
0

3πǫ0~c3

2J + 1

2J ′ + 1
|〈J ||µ||J ′〉|2 (2.95)

to have the value 3.584 24(74) × 10−29C · m.

2.7 Laser Frequency Control

The laser beams used during the experiment can be roughly divided

into two categories: those far from resonance with any transition in 87Rb and

those close to an atomic transition, specifically the D2 transition. The absolute

frequency of the laser beams which are far from resonance is not crucial (their

role in optical dipole trapping is discussed elsewhere). There is a need however,

to control the frequency of the near resonance laser beams. These beams are

used for laser cooling and to induce a state change in 87Rb atoms during the

single-photon cooling process. This works only if the frequency of these beams

are tuned correctly. Typically the frequency of these beams must be brought to

within a few natural linewidths of the D2 transition frequency. The frequency

of this transition is ≈ 384 THz while its natural linewidth is only ≈ 6 MHz.

Therefore the frequency of these laser beams must be controlled to the ∼ 1

MHz level, or to 1 part in 108. A laser frequency locking scheme based around

saturation absorption spectroscopy is use for this purpose.

2.7.1 Doppler Broadening

At room temperature, Doppler broadening is usually the dominant con-

tribution to the observed width of lines in atomic spectra. For example, the
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D2 transition in 87Rb has a natural linewidth of 6 MHz due to the process of

radiative damping [70]. Doppler broadening smears this line out increasing its

observed width to ∼ 0.5 GHz at room temperature. The source of this broad-

ening can be understood by considering the relationship between the angular

frequency ω of radiation in the laboratory frame of reference and the angular

frequency ω′ seen in a frame of reference moving at velocity ~v

ω′ = ω − ~k · ~v, (2.96)

where ~k is the wavevector of the radiation and has a magnitude k = ω/c. This

equation is correct to first order in v/c and suffices in most situations, however

higher order Doppler effects must be considered in extremely precise spectro-

scopic measurements. As indicated by the dot product, it is the component of

velocity along the direction of k̂ which is responsible for this shift. Therefore

to simplify this notation we assume a 1-D geometry so that ~k ·~v = kv. Figure

2.13 illustrates these ideas for a single atom moving with velocity v to the

right. This atom sees radiation traveling to the right at a decreased frequency

and radiation traveling to the left at an increased frequency.

Consider now an ensemble which consists of atoms which absorb ra-

diation at frequency ω0 in their rest frame, i.e. when ω′ = ω0. Atoms with

velocity v will absorb radiation when the Doppler effect shifts the frequency

into resonance

ω − ω0 = kv. (2.97)

If we assume that the ensemble is in thermal equilibrium then the
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ω ω - kv ω  = ω + kv

Figure 2.13: The Doppler effect shifts the observed frequency of radiation
due to the atoms velocity. The atom travels to the right and sees radiation
traveling to the right at a decreased frequency and radiation traveling to the
left at an increased frequency.

velocity distribution is given by the 1-D Maxwell-Boltzmann distribution

f(v)dv =
1

u
√

π
e−

v2

u2 , (2.98)

where u =
√

2kBT/m is the most probable speed for atoms. The absorption

profile g(ω) of this ensemble can be found by relating the velocity of the atoms

with their corresponding absorption frequency using Eq. 2.97, the result being

g(ω) =
c

uω0

√
π

e
− c2

u2 (
ω−ω0

ω0
)2
. (2.99)

This Doppler broadened profile has a Gaussian shape and a full width at half

maximum (FWHM) ∆ωD of

∆ωD = 2ω0

√
ln2

u

c
, (2.100)

which for 87Rb is 1.4 × 10−6, limiting the resolution of spectroscopic mea-

surements to approximately 1 part in 106. Because we use a laser frequency

locking scheme which is referenced to 87Rb transition lines, the resolution with

which we resolve these transitions places a limit on our ability to control the

frequency of the lasers. The needed resolution is 1 part in 108 so we must use

a spectroscopic technique which suppresses the effect of Doppler broadening.
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2.7.2 Saturation Absorption Spectroscopy

Saturation absorption spectroscopy is a nonlinear Doppler-free spectro-

scopic technique [18, 79]. The standard setup for this technique is shown in

Fig. 2.14. A beam splitter separates a beam into a weak probe beam and a

Laser

Pump beamProbe beam

Photodetector
87

Rb Vapor Cell

Beam splitter

Figure 2.14: A typical saturation absorption spectroscopy setup applied to
87Rb. A laser is divided unequally into two beam paths. An intense pump
beam overlaps a weaker counter-propagating probe beam in an atomic va-
por cell. The transmission intensity of the probe beam is monitored with a
photodiode as a function of laser frequency.

strong pump beam which travel in opposite directions and overlap in a vapor

cell. The intensity of the pump beam is typically larger than the saturation

intensity of the transition (Ipump & Isat), while the probe beam is much less

intense (Iprobe ≪ Isat). The intensity of the transmission of the probe beam

is monitored as a function of laser frequency. Figure 2.15(a) shows a typical

result of such a measurement in the absence of a pump beam when probing

a single transition. The result is a Doppler broadened absorption profile of

width ∆ωD.
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a) b)

Dw
D

Dw
hole

Figure 2.15: Spectrum obtained (a) without and with (b) the pump beam. (a)
With no pump beam present the resulting spectrum is dominated by Doppler
broadening and has a FWHM of ∆ωD. (b) When the pump beam is present a
narrow peak of FWHM ∆ωhole is seen at the center of the Doppler broadened
spectrum.

If the pump beam is present the result of the same scan shows a narrow

peak in the center of the wide Doppler profile, Fig. 2.15(b). This can be

understood in terms of the action of the pump beam. It interacts with atoms

that have a velocity v = (ω − ω0)/k and excites many of them into the upper

level, removing them from the lower level, in a process known as hole burning

[79]. The width of the hole burnt into the lower level is equal to the power-

broadened homogeneous linewidth

∆ωhole = Γ(1 +
Ipump

Isat

)1/2. (2.101)

If the frequency of the laser beam is off resonance then this has no effect

on the transmission of the probe beam because it interacts with atoms with

a velocity v = −(ω − ω0)/k. However, if the laser beam is resonant with the

transition then both beams interact with atoms with velocity v = 0 and the
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ground state depletion due to the pump beam reduces the absorption of the

probe beam producing the sharp peak in Fig. 2.15(b). The width of this peak

is given by Eq. 2.101 and is much smaller than the Doppler width.

If there are several excited states separated by less than the Doppler

width which share a common ground state then the spectrum obtained displays

cross-over resonances. This situation is depicted in Fig. 2.16. Cross-over

resonances appear midway between true transitions and result from atoms

moving with velocity such that one transition is resonant with the pump beam

while the other transition is resonant with the probe beam.

g

Cross-over transition

e
1

e
2

a) b)

Figure 2.16: (a) An atom has two excited states within the Doppler width
which share a common ground state. (b) The resulting spectrum obtained
with the saturated absorption technique has in addition to two peaks corre-
sponding to the center of each transition a third peak known as a “cross-over
resonance.” This peak comes from atoms with velocity such that the pump
beam is resonant with one transition, while at the same time the probe beam
is resonant with the other transition. This always occurs exactly between the
two real transition frequencies and due to this symmetry the appearance of
cross-over resonances usually does not present added ambiguity in interpreting
a spectrum.
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2.7.3 Laser Frequency Lock

The spectrum obtained from saturation absorption spectroscopy can

be used to lock the frequency of a laser using a conventional PID feedback

loop. To keep the discussion simple, consider the signal obtained from a single

transition such as that shown in Fig. 2.17. This signal can be obtained by

Frequency 

Generator

Lock-in 

Amplifier
ref.

signal in

Sat. Abs. Spectrum

Error Signal 

Laser 

Vapor Cell

Frequency 

Dither

Frequency 

Control 

Input

Figure 2.17: A typical layout of a saturation absorption spectroscopy setup
used to lock the frequency of a laser. The frequency of a laser beam is slowly
swept over an atomic transition and the spectrum is observed using a satura-
tion absorption spectroscopic technique. If a frequency dither is put on the
pump beam and the resulting signal is mixed with the dithering frequency in a
lock-in amplifier, the resulting signal is a Doppler background free error signal,
which is the derivative of the narrow central peak of the original signal. This
signal can be used an an “error signal” to lock the frequency of a laser.

slowly sweeping the frequency of the laser up and down. The wide Doppler
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broadened background can be removed from this signal by adding a fast fre-

quency dither to the pump beam and then mixing the saturation absorption

spectrum with the dither frequency ωdither in a lock-in amplifier (see Fig. 2.17).

The removal of the Doppler broadened background occurs because if the laser

beam is off resonance then the pump and probe beam do not interact and a

frequency dither of the pump beam does not induce an intensity modulation

in the probe beam at ωdither. The lock-in amplifier output is therefore zero

for all such laser frequencies. If however the laser frequency is near resonance

then a frequency dither of the pump beam does induce a modulation in the

intensity of the probe beam at ωdither. Furthermore, the amplitude of the mod-

ulation is proportional to the slope of the saturation absorption spectrum so

the output of the lock in amplifier is the Doppler background free derivative

of the spectrum. This curve is perfect for use as an “error signal” in a laser

frequency feedback loop because it is zero on resonance and has an opposing

sign on either side of resonance.

This scheme is used to lock our near resonance laser during the exper-

iment. The detailed layout of our locking scheme can be found in Ch. 3.

2.8 Imaging

During the course of the experiment the atomic cloud is imaged so that

we can extract information about the ensemble, such as its density distribution,

total atom number and temperature. We use two atomic imaging techniques

to accomplish this. The first, absorption imaging, relies on the atomic sample
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scattering photons out of a resonant beam to form a “shadow” on a CCD

camera. The second technique, fluorescent imaging, places the atomic sample

in optical molasses and a portion of the resulting fluorescence is captured and

imaged. These two imaging techniques are somewhat complementary because

absorption imaging yields spatial information while fluorescence imaging is

more sensitive to atom number.

2.8.1 Absorption Imaging

Absorption imaging can be understood by imagining a near- or on-

resonance laser beam passing through an atomic sample. As discussed in Sec.

2.5.2.2, atoms in the sample will each scatter photons out of the laser beam

at a rate

Rscatt =
Γ

2

(I/Isat)

1 + 4(∆/Γ)2 + (I/Isat)
.

We can use this equation to define the atomic scattering cross section σ as the

power scattered by each atom per incoming light intensity (σ = Rscatt~ω/I)

σ =
σ0

1 + 4(∆/Γ)2 + (I/Isat)
, (2.102)

where

σ0 =
~ωΓ

2Isat

, (2.103)

is the on-resonance, low saturation cross section. As the laser beam passes

through the atomic cloud scattering will reduce its intensity according to Beer’s

law

dI

dz
= −σn(x, y, z)I, (2.104)
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where n is the number density of atoms. Direct integration of this equation

yields the transverse intensity profile of the beam at a position z.

I(x, y) = I0(x, y)e−σ
∫

n(x,y,z)dz, (2.105)

This equation shows us that the intensity of the beam after passing through

the atomic sample is proportional to the negative exponential of the scattering

cross section multiplied by the integrated atomic column density. Therefore

by measuring I(x, y) and I0(x, y) it is possible to extract the atomic column

density. I(x, y) and I0(x, y) are measured by a CCD camera, the former is

taken with the atoms of interest present in the beam path and the latter is

taken with no atoms present. A computer then calculates the optical density

of the sample, defined as

Dopt(x, y) = −ln

(

I(x, y)

I0(x, y)

)

= σ

∫

n(x, y, z)dz, (2.106)

to yield a quantity directly proportional to the integrated column density. This

quantity is easily manipulated numerically to give the total number of atoms

N present in the sample.

N =

∫ ∫

Dopt(x, y)dxdy, (2.107)

This imaging technique is also used to probe the temperature of atomic

samples through the Time-of-Flight (TOF) method [80, 81]. The idea is to

release an atomic sample from all trapping potentials and then measure its

subsequent expansion. In the absence of inter-atomic interactions, the re-

leased atoms follow ballistic trajectories with velocities proportional to their
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momentum at the time of release. The final atomic distribution is therefore

a convolution of the initial atomic distribution with the initial momentum

distribution.

This can be made more concrete by considering atoms originating from

~r0 and arriving at ~r after a time-of-flight t. If we assume that the velocity

distribution for these particles is ζ(~v) then we expect to find the number of

atoms in a volume element d3r located at position ~r at time t to be [80]

dn = G(~r, t;~r0)d
3r = ζ(~v = [~r − ~r0/t])d

3v, (2.108)

where G(~r, t;~r0) is the boundary Green’s function describing the evolution

of the spatial distribution of the atoms. If the atoms have a 3-D Maxwell-

Boltzmann velocity distribution initially, then the Green’s function is given by

[80]

G(~r, t;~r0) =

(

m

2πkBTt2

)3/2

e−m|~r−~r0|2/2kBTt2 . (2.109)

If we assume that the atomic sample has a Gaussian spatial distribution ini-

tially, given by

n0(~r) =
1

(2πσ2
n)3/2

e−r2/2σ2
n , (2.110)

then we can solve for the spatial distribution after an expansion time t by

evaluating

n(~r, t) =

∫

G(~r, t;~r0)n0(~r0)0d
3r0. (2.111)

The result is

n(~r, t) =
1

(2πσ2
c )

3/2
e−r2/2σ2

c , (2.112)
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where

σ2
c = σ2

n +
kBTt2

m
. (2.113)

By taking multiple images of the atomic cloud as it expands and fitting

the measured widths to this expression, the temperature can be extracted.

Examples of this technique applied to our atomic samples of 87Rb are given in

Ch. 4.

2.8.2 Fluorescence Imaging

In addition to using absorption imaging, we also use the technique

of fluorescence imaging to determine the total number of atoms present in

our sample. The idea is quite straightforward: atoms are placed into optical

molasses which slows their motion via photon scattering as discussed in Sec.

2.5.2.2. The scattered photons are partially collected on a CCD and used to

estimate the number of atoms taking part in the scattering process. The atom

number can be estimated with help from Eq. 2.76 to be [43]

Natom =
8π [1 + 4(∆/Γ)2 + (6I0/Isat)]

Γ(6I0/Isat)texpηcountdΩ
Ncounts, (2.114)

where I0 is the intensity in each of the six molasses beams, texp is the CCD

exposure time, ηcounts is the CCD efficiency in (counts/photon) and dΩ is the

solid angle of photon collection.

In the experiment this technique is used when the atom number is too

low to yield an absorption signal or when we are interested solely in atom
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number and not the spatial profile of the atomic cloud. This technique is so

sensitive it can be used to detect a single atom [82].
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Chapter 3

Experimental Apparatus

This chapter discusses the apparatus used to perform the experiments

discussed in this dissertation. It begins with a description of the vacuum

chamber used to isolate our atoms from the environment. Next, a discussion

of the laser systems used to control and confine the atoms is presented. This

portion starts with a description of the near-resonance lasers which are used

to cool, confine and control the internal state of the atoms. Then, a discussion

of the far-detuned laser used to form a conservative optical dipole trap for the

atoms is given. Next the coils used to create the magnetic field for both the

MOT and magnetic trap are discussed. Finally, the geometries of the vertical

and horizontal imaging systems are outlined. Because the apparatus has been

explained in detail elsewhere [83–85], I will only discuss the most relevant

aspects, giving references to sources of more detail for the interested reader.

3.1 Vacuum Chamber

The vacuum chamber is designed to operated in a double MOT config-

uration after the design given in reference [86]. The idea behind this config-

uration is that there are two desirable but competing features one needs in a
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vacuum chamber used for atomic experiments. The two features, rapid MOT

loading and a long magnetic trap confinement time, are typically mutually

exclusive because the former is favored by a high background vapor pressure

while for the latter very low background pressures are required. The double

MOT configuration solves this problem by separating the chamber into two re-

gions, one of high pressure and one of low, connected by a differential pumping

tube. Atoms are rapidly loaded in the high pressure region and then “pushed”

with a resonant beam (the so-called push beam) into the low pressure region.

To this end, our chamber consists of an upper region maintained at the ru-

bidium vapor pressure, a lower chamber more than three orders of magnitude

lower in pressure, and a middle chamber which houses the pumps required to

maintain this pressure differential. The entire chamber is shown in Fig. 3.1.

This photograph was taken during a vacuum bakeout so the chamber is away

from the experiment, allowing a clear view of its elements. The three vacuum

chamber sections are indicated in the photograph.

3.1.1 Upper Chamber

The upper chamber serves as a high pressure region for quickly accu-

mulating 87Rb atoms in a MOT which are then pushed into the lower chamber.

This function is served with a simple design consisting of three main elements:

a glass cell, a source of rubidium and a differential pumping tube connecting

the upper and lower chamber, as shown in Fig. 3.2.

The glass cell is constructed from a rectangular section of Pyrex glass
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Figure 3.1: The vacuum chamber during a bakeout, away from the rest of the
experimental apparatus. The upper, middle and lower portions of the chamber
are marked.

and has the outer dimensions of 4′′ × 1-1/4′′ × 1-1/4′′. The chamber walls

are 1/4′′ thick. The cell is connected to a 2-3/4′′ CF steel flange through a

graded glass-to-metal seal (Larson Electronics Glass Inc. SQ-150-F2). These

two pieces were assembled by Technical Glass Inc. allowing the glass cell to

be connected to standard vacuum components.

The 2-3/4′′ flange at the base of the glass cell is attached to a composite

piece of vacuum hardware. This composite piece consists of a 2-3/4′′ rotatable

half-nipple welded to a rotatable 4-1/2′′ blank flange. This piece serves three

main purposes. First, it acts as a size adapter allowing the glass cell to be
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Figure 3.2: Views of the upper chamber. a) The glass cell connects to the
composite piece through a glass-to-metal seal. The differential pumping tube is
also attached to the composite piece. b) Schematic of the differential pumping
tube and composite piece. The CF flange on the right connects to an all metal
valve in the experiment. c) The all metal valve connects to the Rb reservoir.

attached to the middle chamber. Second, the differential pumping tube is

welded to the composite piece such that the only connection between the

upper and lower chamber is through this tube. Finally, a 1/2′′ tube is welded

to the side of the nipple portion of the composite piece and serves as a path

to introduce rubidium into our vacuum system.

A 2-3/4′′ flange is welded to the end of the 1/2′′ tube connected to the

side of the nipple. The flange is attached to a 2-1/2′′ all metal valve from
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Nor-Cal Products Inc. (AMV-1502-CF). Attached to the metal valve via a

zero length reducer is a 1-1/3′′ tee. Both sides of the tee have 1/2′′ copper

pinch-off tubes (Huntington, CPT-133-050) attached. One of these was used

as a connection port to a turbo-pump station during the vacuum bakeout. It

was sealed when the bakeout was complete. The other pinch-off tube houses

a glass ampule containing ≈ 200 mg of Rb (ESPI, purity 3N5). The ampule

was cracked from the outside by squeezing the copper tube with pliers when

the pump down was complete but while the chamber was still attached to the

turbo-pump station.

The ≈ 200 mg piece of solid Rb contains the isotope of interest, 87Rb,

at the natural abundance level of ≈ 28%. One may wonder what role, if any,

the more abundant isotope 85Rb played in our experiment. The isotopic shift

is sufficiently large so that 85Rb is not resonant with the laser beams tuned

near the D2 transition in 87Rb. This means that 85Rb is not captured in our

MOTs. However, the two isotopes can collide resulting in magnetic trap loss.

The combined vapor pressure of both isotopes determines the collision rate,

and hence the lifetime of atoms in the magnetic trap. In this sense the presence

of 85Rb has a somewhat detrimental effect.

The pressure in the upper chamber is determined by the vapor pressure

of solid rubidium at room temperature which can be approximated by Eq. 2.1

log10Pv = 2.881 + 4.857 − 4215

T
.

The experiment resides in a room servo-looped to maintain a temperature
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of 22 ◦C. The expected vapor pressure is therefore ≈ 3 × 10−7 torr. This

pressure is sufficiently high to rapidly load a MOT in the upper chamber. This

MOT serves as a reservoir of atoms which are pushed through the differential

pumping tube and recaptured in the lower MOT.

The differential pumping tube maintains a pressure differential between

the upper and lower chamber allowing long magnetic trap lifetimes in the lower

chamber. The differential pumping tube is formed from a 6-3/4′′ long 304

stainless steal tube with an outer diameter of approximately 1/2′′. The inner

diameter increases in five steps from 1/8′′ at the top to 3/8′′ at the bottom.

This internal taper was made to allow room for the push beam to diverge

while still maintaining a sufficiently low conductance, which is calculated to

be C ≈ 52 mL/s for this tube [87]. The pumping speed in the lower chamber

is 75 L/s resulting in a pressure differential of approximately 1500 between the

upper and lower chambers [87]. The expected pressure in the lower chamber

is therefore approximately 2 × 10−10 torr.

The top of the differential pumping tube is cut at 20◦ to allow diagonal

MOT beams to pass unclipped. A MOT is formed in the upper chamber

from three pairs of counter-propagating near-resonant beams and two current

carrying wire coils, as discussed in Sec. 2.5.2.4.

3.1.2 Middle Chamber

The middle-chamber is located directly below the upper-chamber and

serves as a hub to attach the vacuum equipment needed to pull, maintain,
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and monitor the necessary vacuum level in the lower-chamber. This section

is necessary because both the upper and lower chambers primarily consist

of glass cells, greatly restricting the number of possible connections to other

vacuum components. This portion of the vacuum chamber dates back to pre-

rubidium days when it was used in experiments performed with cesium. A

detailed description of this vacuum chamber section can be found in several

dissertations discussing those experiments [88–90] so only a brief overview will

be given here.

The middle chamber is a modified six-way cross with 4-1/2′′ CF flanges.

The upper and lower flanges are connected to the upper and lower chamber

respectively. The modification of this chamber involved the addition of four

half-nipples, each 1-1/2′′ long with 2-3/4′′ non-rotatable CF flanges attached to

one end. These are positioned in between the original 4-1/2′′ ports in a plane

horizontal to the ground. While this arrangement allows for eight connections

to be made to this chamber (not including the connection to the upper- and

lower- chambers), only four are currently in use.

Attached to one 4-1/2′′ flange is an ion pump (Varian 919-0103) with a

pumping speed rated at 75 L/s. The pump is supplied with power by a VacIon

pump control unit (model 921-0062) operating at 6 kV. A titanium sublimation

pump is attached to a second 4-1/2′′ flange. This unit has a pumping speed

of 300 L/s under normal operating conditions. A hot-cathode, nude Bayard-

Alpert style ion gauge is attached to one of the 2-3/4′′ flanges. This ion

gauge operates in the 10−3 to mid-10−10 torr range limiting its usefulness once
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operating pressures of high 10−11 torr have been reached. Finally, an all metal

valve is attached to the 2-3/4′′ flange opposite to that used for the ion gauge.

This valve is used during vacuum bakeouts to connect the middle-chamber

to the turbo-pump station. The middle-chamber and the attached elements

discussed here are shown in Fig. 3.3 in a top-down photograph of the vacuum

chamber.

ion 
pump

ion gauge

TSP 

all metal 
valve

Figure 3.3: Top-down photograph of the vacuum chamber. Pictured attach-
ments are the ion pump, titanium sublimation pump (TSP), ion gauge and an
all metal valve used during the bakeout process.
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3.1.3 Lower Chamber

The lower chamber is where all of the experiments take place. It has

been designed to provide an ultra-high vacuum (UHV) environment with ex-

cellent optical access. Like the upper chamber, the lower chamber consists

primarily of a glass cell, but because the optical interaction and probe beams

must pass through the walls of this cell it is of much higher optical quality.

The lower chamber is constructed from a rectangular glass cell attached

to a glass disc, shown in Fig. 3.4. Both of these pieces are made from the

Figure 3.4: The lower glass cell is constructed from a rectangular and a disc
shaped piece.

material Spectrosil, a “UV grade” synthetic fused silica with excellent optical

properties. The rectangular cell has the outer dimensions 30 × 30 × 115 mm
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and has walls 5 mm thick. The glass disc has a diameter of 75 mm, a thickness

of 17 mm and a hole through its center with a diameter of 20 mm which allows

passage between it and the middle chamber. The piece was prepared and

assembled by Hellma Cells Inc. using a remarkable technique. Each of the

glass plates used in constructing the cell was polished and optically contacted.

The cell was then heated to just below the material melting point, fusing the

pieces together without the use of any cement or adhesive. This technique

produces very high optical quality cells which are free of any material (i.e.

adhesive) which could potentially be UHV incompatible.

The all glass lower cell is connected to the middle chamber through the

use of spring energized seals manufactured by Garlock Helicoflex (H-307330).

These seals work via the elastic deformation of a metal jacket surrounding

a close-wound helical spring. The metal jacket is chosen to have a greater

ductility than both the glass cell and steel chamber it connects. The seals

we used have two small ridges on the top and bottom which concentrate the

compression load in small region (see Fig. 3.5).

The seals are available with jackets made from a variety of materials.

The jacket used in the experimental apparatus was made from silver. While a

good seal was formed, this product was found to damage the glass cell. The

damage is visible in Fig. 3.4 as a white ring on the disc shaped section of

the cell. After the damage was discovered we experimented with aluminum

jacketed seals (H-307592) and found that they seal equally well and do not

damage the glass substrate.
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Figure 3.5: A Helicoflex seal. a) The narrow ridges along the top and bottom
concentrate the compression load, facilitating the sealing process. b) A metal
jacket surrounds a helical spring to form this type of sealing device.

3.2 Lasers

There were a total of seven lasers used during the course of the experi-

ments described in this dissertation. Five of these lasers have frequencies near

the 87Rb D2 transition and were used to capture, cool, detect, and manipulate

the internal state of the atoms. I refer to these as near-resonance lasers. The

other two lasers have frequencies far detuned from any atomic resonance in Rb

and were used to form optical dipole traps to contain the atoms. A description

of each laser and its use in the experiment is given in the next several sections.
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3.2.1 Near-Resonance Lasers

Laser beams tuned near the resonance of the 87Rb D2 transition are

used for a variety of purposes in our experiment. This includes forming MOTs

in conjunction with a magnetic field gradient. The frequency of these beams

is typically about 15 MHz to the red of the |F = 2〉 → |F ′ = 3〉 transition.

Because 87Rb atoms occasionally decay into the |F = 1〉 manifold, where they

are no longer resonant with the MOT beams, a repump beam is introduced

into the system to place them back in the cooling cycle. The repump beam

is resonant with the |F = 1〉 → |F ′ = 2〉 transition and serves to deplete

atoms from the |F = 1〉 ground state. To cool atoms via optical molasses

(Sec. 2.5.2.2) we use beams tuned 50 MHz to the red of the |F = 2〉 → |F ′ = 3〉

transition. To image and push atoms from the upper MOT to the lower MOT

a beam resonant with the |F = 2〉 → |F ′ = 3〉 transition is used. To place

atoms in a magnetically trappable state they are optically pumped by a laser

resonant with the |F = 2〉 → |F ′ = 2〉 transition. Finally, to change the

internal state of the atoms from |F = 2,mF = 2〉 to |F = 1,mF = 0〉 during

the single-photon cooling process a depopulation beam is used. This beam is

tuned 35 MHz to the red of the |F = 2〉 → |F ′ = 1〉 transition. A diagram

of each of these beams in relation to the hyperfine structure of the 87Rb D2

transition is given in Fig. 3.6.

To generate the required frequencies and optical powers needed to per-

form these tasks, a total of five diode lasers are used. Two of these diode lasers

are master oscillators (called the MOT and repump master) and are locked
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to the appropriate frequency through the saturation absorption spectroscopy

laser frequency locking scheme discussed in Sec. 2.7.2 and Sec. 2.7.3. The

remaining three diode lasers are injection locked by seeding them with light

from the MOT master oscillator. The resultant near-resonance light is shifted

in frequency with acousto-optic modulators to fine tune them to the precise

frequency needed for each application.
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Figure 3.6: Near-resonance laser frequencies used in the experiment in relation
to the hyperfine structure of the 87Rb D2 transition.
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3.2.1.1 MOT Master Laser

The MOT master laser is based around a simple, inexpensive single-

mode laser diode. The diode used in the experiment was purchased from

Intelite Inc. (model: MLD-780-100S5P). This model operates nominally at a

wavelength of 780 nm and output power of 100 mW with an injection current

of 120mA.

The diode is made to lase at a chosen frequency and with a narrow

bandwidth by placing it in a Littrow configured, grating-stabilized cavity [91,

92]. The cavity is shown in Fig. 3.7 and is formed from the reflective back facet

of the laser diode and a grating. The diode is positioned in the cavity by first

placing it in a collimation tube (Thorlabs, LT230P-B) which bundles its output

into a low divergence beam. This is then inserted into a bronze holder which

slides into a bronze mounting block, directing the optical radiation towards

the grating. The grating (Edmund Scientific) is formed from a 500 Å thick

gold coating with 1200 grooves/mm etched into it. The grating face measures

12.5 × 12.5 mm. In the Littrow configuration the grating serves as both a

cavity end mirror and an output coupler. The 1st order reflection off of the

grating is directed back into the laser diode, while the 0th order reflection is

used as the output beam. For the 1st order beam to reflect back into the laser

diode, the angle of incidence of the incoming beam with respect to the grating

surface must satisfy the Littrow condition

mλ = 2dsin(α), (3.1)
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Figure 3.7: The MOT master laser is a simple laser diode placed in a Littrow
configured cavity. The laser cavity is placed within a Plexiglass cover to help
isolate it thermally from the environment.

where m is the order of the reflection, λ is the wavelength of light, d is

the groove spacing, and α is the angle of incidence. For a first-order re-

flection of a beam at 780 nm off of a grating with a line spacing of d =

(1200grooves/mm)−1 = 0.833µm, the incident angle must be 27.9◦ for the

beam to return to the laser diode. The lasing wavelength can be tuned in

this configuration by slightly adjusting the angle of the grating which in turn

slightly changes the cavity length and therefore the supported mode frequency.

For stable operation both the temperature and laser diode injection

current must be regulated as they both affect the lasing frequency. The tem-

perature of the laser diode is monitored with a 50 kΩ glass-bead thermistor
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(Fenwal Electronics) positioned beneath the bronze mounting block. The re-

sistance of this bead (which is of course temperature dependent) is used in

a feedback loop to lock the temperature. The temperature control unit was

designed by Leo Hollberg’s group at NIST in Boulder, CO and regulates the

power to a thermo-electric cooler (Melcor, CP1.0-127-05L) positioned below

the mounting block in response to the measured temperature. The laser diode

injection current is regulated by a PID circuit designed and built by a previous

student [84].

The angle of the grating can be adjusted by hand with two fine-pitched

screws. Behind one of the screws is a stack of three piezo discs (American

Piezo Ceramics, 8 mm × 2.54 mm; 1.35µm /kV) which is used to fine-tune

the angle electronically. Feedback on the peizo stack allows us to lock the

frequency of the MOT master laser.

Our locking scheme is accomplished by picking off a small portion (∼

1 mW) of the output of the MOT master laser with a 103 MHz AOM and

sending it to a saturation absorption spectroscopy setup. This setup yields

the Doppler-free spectrum of the F = 2 → F ′ transitions as well as the cross-

over resonances. This spectrum is converted into a suitable error signal for use

in a PID loop.

The saturation absorption spectroscopy setup used in this experiment

to lock the MOT master laser frequency is shown in Fig. 3.8. The picked-

off portion of the MOT master laser beam sent to the saturation absorption

spectroscopy setup is split unequally into a strong pump beam and a weak
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Figure 3.8: Layout of the MOT master saturation absorption spectroscopy
setup used to lock this laser to the correct frequency.

probe beam by a glass plate. The probe beam is directed by a series of mirrors

around the Rb vapor cell and then through it. After passing through the vapor

cell the probe beam is directed by a polarizing beam splitter cube (PBSC) into

a lens (f = 36 mm) focusing the beam onto a fast photodiode. The pump beam

is reflected by a PBSC directing it into an AOM. The AOM is driven by a

frequency modulated (f.m.) signal centered at 44 MHz. The modulation depth

and frequency are 4 MHz and 7 kHz respectively. The purpose of the frequency

modulation will be clear shortly. The 1st order diffracted beam from the AOM

passes through a λ/4 waveplate and is then retro-reflected by a spherical mirror
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back into the AOM in a standard double pass configuration. The 1st order spot

from the double passed beam passes through the PBSC once again, but because

it has passed through a λ/4 waveplate twice its polarization has rotated 90◦

and so is transmitted by the cube. The pump beam then passes though the

Rb vapor cell, overlapping the probe beam.

Because the probe beam has double passed a 44 MHz AOM (each time

the 1st order beam was used) its frequency has been shifted up by 88 MHz. This

results in the pump and probe beam interacting with atoms which have velocity

such that they are Doppler shifted by 44 MHz and not with the stationary

atoms as discussed in Sec. 2.7.2. The result is that the signal produced by the

fast photodiode reflects the Doppler-broadened transition with peaks at each of

the real transitions (F = 2 → F ′ = 1, 2, 3) as well as the cross-over resonances

(F = 2 → 1/2, 1/3, 2/3) shifted by 44 MHz from their zero velocity value. This

signal is mixed in a lock-in amplifier (SRS SR510) with the f.m. modulation

frequency, resulting in a Doppler-free dispersion signal (see Sec. 2.7.2).

Any of the dispersive curves, shown in Fig. 3.9, could be used as an

error signal to lock the master laser frequency, but we used the F = 2 → 2/3

cross-over transition because it is the most prominent. This signal serves as

an error signal and is sent to a home-built PID [89] lockbox, which outputs

a control signal which we amplify with a Trek 601B-2 high voltage amplifier.

The amplified signal drives the piezo stack, controlling the lasing frequency

and closing the loop.

While this setup allows us to lock the MOT master laser, the laser out-
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Figure 3.9: The MOT saturated absorption spectroscopy dispersive signal.
The real and cross-over transitions corresponding to each dispersive lineshape
are as follows: a)F = 2 → F ′ = 1 b)F = 2 → F ′ = 1/2 c)F = 2 → F ′ = 2
d)F = 2 → F ′ = 1/3 e)F = 2 → F ′ = 2/3 f)F = 2 → F ′ = 3.

put is not at the F = 2 → F ′ = 3 transition frequency, which is needed for the

operation of the MOT. The AOM which initially picked off the small portion

of the beam sent to the saturation absorption spectroscopy setup shifted the

beam up by 103 MHz. Because the probe beam was shifted up by 88 MHz

the spectrum obtained corresponded to atoms shifted by 44 MHz so the MOT

master laser output is therefore shifted 147 MHz to the red of the F = 2 → 2/3

cross-over resonance transition frequency. The F = 2 → 2/3 cross-over res-

onance transition frequency is 133 MHz to the red of the F = 2 → F ′ = 3

transition so the MOT master output is 280 MHz to the red of this transition.
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This frequency offset is compensated for in the experimental setup by

a method allowing us to tune the frequency output of the MOT master laser

over the range needed to operate most of the near-resonance laser tasks. How

this is done is shown in Fig. 3.10 which displays the distribution of the MOT

master beam in the experiment setup. Most of the MOT master laser output

power passes through the 103 MHz AOM unshifted. This portion of the beam

H.V. signal 
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lock-box

MOT master 
laser Optical 
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To Saturation 
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Spectroscopy 
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To Slave 
Lasers

To Fabry-Perot 
Cavity 

λ/4

+1

+1

λ/2

λ/2λ/2

anamorphic 
prisms 

pair

Figure 3.10: Distribution of the MOT master laser output. A portion of the
beam is sent to the saturation absorption spectroscopy setup to lock the laser.
Of the remaining portion, a small amount is sent to a Fabry-Perot cavity to
monitor the spectrum. The rest is used to injection lock the slave lasers.

double passes an AOM driven at a frequency of 80 ± 20 MHz. This shifts the

beam to somewhere between 80-160 MHz to the red of the F = 2 → F ′ = 3

transition. We then use 80 MHz AOMs as fast beam shutters elsewhere in

the experiment so that the beams derived from the MOT master laser have

frequency detunings 0-80 MHz to the red of the F = 2 → F ′ = 3 transition.

This range covers the spectrum needed for a large portion of the near-resonance
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beams. For example the MOT and optical molasses beams are tuned 15 MHz

and 50 MHz to the red of the F = 2 → F ′ = 3 transition, respectively.

3.2.1.2 Slave Lasers

The MOT master laser does not produce enough optical power to oper-

ate the upper and lower MOT. The frequency stabilization process described

in the previous section reduces the output power of the laser diode used in

the MOT master laser from its free running level (∼ 100 mW) to roughly

∼ 30 mW. One method of increasing the available power at a particular fre-

quency is to use “slave lasers” frequency locked to a master oscillator. Our

experimental apparatus utilizes three slave lasers, each frequency locked to the

MOT master laser output. Once locked, the result is three diode lasers with

the same spectral properties as the MOT master laser outputting an optical

power near their free-running level.

Similar to the MOT master laser, the slave lasers are designed around

a very inexpensive laser diode. The diode used in each slave laser (Digi-Key:

GH0781JA2C) outputs a single-mode near the nominal operating wavelength

of 784 nm. Even though the nominal output wavelength is 784 nm, it can be

tuned with temperature to the needed value of 780 nm. The maximum free-

running optical power of these laser diodes is 120 mW operating at an injection

current of 167 mA.

Like the MOT master laser diode, each slave laser diode is placed in a

collimation tube (Thorlabs: LT230P-B) which is inserted into a bronze holder.
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The holder is placed into a bronze mounting block. Below the mounting block

is a TEC, which is used to control the temperature of the laser diode in con-

junction with a thermistor and temperature controller, see Fig. 3.11. The

injection current into each diode is controlled with a PID loop identical to

aluminum 
housing

Brewster 
window

diode in 
coll. tube 

and 
bronze holder

mounting 
block

Figure 3.11: A slave laser used in the experiment to generate sufficient resonant
light. The left image shows the laser with its aluminum housing in place. The
right image is taken without the aluminum housing, revealing the laser diode
and mounting block.

that used in the MOT master laser.

Injection locking is accomplished by seeding the free-running diode

lasers with a weak beam spatially matched to the diode laser output. We

seed a small amount of light (∼ 2 mW) from the MOT master laser beam into

each slave laser. This is done by using the optical isolators (ConOptics: 713B)

placed after each slave laser. The seed light is sent into the rejection port of

each optical isolator collinear to the rejected portion of the beam from the

slave lasers as shown in Fig. 3.12. Because optical isolators utilize Faraday

rotation to work, they rotate the polarization of light passing though them

in the same direction regardless of the direction of travel. Therefore the seed
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Figure 3.12: The slave lasers are injected using the rejection port of the optical
isolator protecting each laser from back reflections.

beam emerges from the optical isolator with the same polarization as the slave

laser output. A more detailed description of the seeding procedure can be

found in reference [83].

Injection locking can be understood by considering free-running laser

diodes to be regenerative amplifiers with a natural oscillation frequency ω0

and output power I0. If a beam of intensity I1 is seeded into this amplifier,

its intensity at the output will be |g̃(ω1)|2I1, where g̃(ω1) is the frequency

dependent gain of the laser medium. If ω0 (which we control with temperature

and the injection current) is close to ω1 then the value of |g̃(ω1)|2I1 approaches

I0. In this limit the amplified signal begins to steal enough gain from the lasing

medium that the free-running laser oscillation dies out. Much more detail on

this process can be found in [93].

The distribution of the three slave lasers is discussed in the next several
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sections.

3.2.1.3 Upper MOT Horizontal Slave Laser

As suggested by the name, the primary function of this slave laser is

to provide optical power to the upper MOT horizontal beams. This laser

produces more than enough power for this purpose, so it is used to create

additional beams.
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Figure 3.13: Upper MOT Horizontal Slave Laser beam distribution.

These include the vertical absorptive imaging beam, the push beam,

and the depopulation beam. The distribution of power from this laser is

illustrated in Fig. 3.13. After the beam exits the laser housing it passes through

an anamorphic prism pair to remove its astigmatism. Then it passes through

an optical isolator protecting the laser diode from back reflections. The beam
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then passes through an AOM driven at 80 MHz. A portion of the 0th order

beam is sent to a Fabry-Perot interferometer to monitor its spectrum. The

remaining portion of the 0th order beam passes through a second AOM driven

at 80 MHz. The first order spot from this AOM is shifted into resonance with

the |F = 2〉 → |F ′ = 3〉 transition (with the correct injection frequency) and is

used as the push beam. This AOM is used as a fast shutter to block the beam

when not wanted. We do this by blocking the drive signal with an rf voltage

controlled attenuator. However even with full attenuation some light is present

in the first order. To completely block this light a slower (∼ 2 ms) mechanical

shutter is used. The zeroth order beam from the second 80 MHz AOM double

passes a 56 MHz AOM and is used for vertical absorptive imaging. The first

order beam from the first 80 MHz AOM passes through an AOM driven at

424 MHz. The zeroth order beam from this AOM is used as the upper MOT

horizontal beams. The −1st order beam is used as the depopulation beam in

the single-photon cooling process. More details on this beam can be found in

Sec. 3.2.1.7.

3.2.1.4 Upper MOT Diagonal Slave Laser

This slave laser is used primarily to produce the upper MOT diagonal

beams. The excess power is used to create the optical pumping beam and

the horizontal absorptive imaging beam. The distribution of power from this

laser is illustrated in Fig. 3.14. This beam also starts by passing through an

anamorphic prism pair and optical isolator. After that it passes through an
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Figure 3.14: Upper MOT Diagonal Slave Laser beam distribution.

AOM driven at 80 MHz. The first order beam is used to create the upper

MOT diagonal beams. This AOM serves as a fast but imperfect shutter which

is augmented by a slow mechanical shutter. The 0th order beam then double

passes an 80 MHz AOM which downshifts the frequency into resonance with

the |F = 2〉 → |F ′ = 2〉 transition, and is used to optically pump the atoms

into the |F = 2,mF = 2〉 state. The zeroth order beam which passes through

the second 80 MHz AOM is double passed through an AOM driven at 56 MHz

to bring it into resonance with the |F = 2〉 → |F ′ = 3〉 transition. This beam
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is used as the horizontal absorptive imaging beam. The 0th order beam from

the AOM driven at 56 MHz is sent to a Fabry-Perot interferometer to monitor

its spectrum.

3.2.1.5 Lower MOT Slave Laser
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Figure 3.15: Lower MOT Slave Laser beam distribution.

This slave laser is used for all six lower MOT beams and has the simplest

distribution scheme (Fig. 3.15). After passing through an anamorphic prism

pair and optical isolator this beam is diffracted by an AOM driven at 80 MHz.

The first order beam is in resonance with the |F = 2〉 → |F ′ = 3〉 transition

(with the correct injection frequency). The 0th order component is sent to a

Fabry-Perot to monitor its spectrum.

3.2.1.6 Repump Master Laser

As suggested by the name, the repump master laser is used to provide

optical power to the upper and lower repump beams. Repump beams are
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needed when forming a MOT or optical molasses because 87Rb atoms can decay

into the |F = 1〉 ground state manifold where they are no longer resonant with

the MOT beams, removing them from the cooling cycle. The repump beam is

resonant with the |F = 1〉 → |F ′ = 2〉 transition and reintroduces atoms into

the |F = 2〉 → |F ′ = 3〉 cycling transition.

The construction of the repump master laser is identical to that of

the MOT master laser and so the details will not be repeated here. The

temperature and injection current are also controlled in a manner identical to

that used for the MOT master laser.

As with the MOT master laser, feedback on a piezo stack positioned

behind the grating allows us to lock the frequency of the repump master laser.

In this case we lock the laser to the F = 1 → 1/2 cross-over resonance fre-

quency. This locking scheme is accomplished by picking off a small portion

(∼ 1 mW) of the output of the repump master laser with a polarizing beam

splitting cube (PBSC) and sending it to a saturation absorption spectroscopy

setup. This setup yields the Doppler-free spectrum of the |F = 1〉 → |F ′〉

transitions as well as the cross-over resonances.

The saturation absorption spectroscopy setup used to lock the repump

master laser differs from that used to lock the MOT master laser. The layout of

this scheme is shown in Fig. 3.16. The portion of the repump master laser sent

to the saturation absorption spectroscopy setup encounters a thick glass plate

which splits it into three beams: a strong pump beam, a weak probe beam and

a weak reference beam. The probe and reference beam are displaced from one
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Figure 3.16: Layout of the saturation absorption spectroscopy locking scheme
used to control the frequency of the repump master laser.

another and parallel. Both beams are directed through a Rb vapor cell. The

pump beam travels around the Rb vapor cell and then through it, overlapping

the probe but not the reference beam. The probe and reference beams are

each focused onto a fast photodiode, and the difference between the signals is

monitored.

The reason the differential photodiode is used becomes clear by consid-

ering the intensity of the probe and reference beams as the frequency of the

laser is slowly swept through resonance. The intensity of the reference beam

will reflect the Doppler-broadened transition. The probe beam intensity will

also have a Doppler-broadened background but will spike at transitions and

cross-over resonances. By taking the difference of these signals we are able to

extract the Doppler-free spectrum.

To obtain a signal which can be locked to, the grating in the repump
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master laser is dithered at 20 kHz. The signal from the differential photodi-

ode is mixed with the dithering frequency in a lock-in amplifier, resulting in

a dispersion signal, shown in Fig. 3.17. We lock to the dispersion curve cor-

responding to the F = 1 → 1/2 cross-over resonance because it is the most
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Figure 3.17: The dispersion curves correspond to the following transitions: a)
F = 1 → F ′ = 0, b) F = 1 → 0/1, c) F = 1 → F ′ = 1, d) F = 1 → 0/2, e)
F = 1 → 1/2, f) F = 1 → F ′ = 2.

prominent.

The hyperfine splitting of the F ′ = 1 and F ′ = 2 state is roughly

157 MHz, so the repump master laser frequency is locked 78.5 MHz below the

desired |F = 1〉 → |F ′ = 2〉 transition frequency. This beam is shifted to the

correct frequency with an 80 MHz AOM before being split by a PBSC and

sent to the upper and lower MOT as shown in Fig. 3.18.
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Figure 3.18: Distribution of the repump master laser beam.

3.2.1.7 Depopulation Beam

The depopulation beam is used during the single-photon cooling process

to transfer atoms from the magnetically trappable |F = 2,mF = 2〉 state to the

magnetically decoupled |F = 1,mF = 0〉 state. More detail on its use during

this process can be found in Ch. 4. This section describes the construction of

this beam.

The depopulation beam is derived from the upper horizontal MOT

beam as shown in Fig. 3.19. The upper horizontal MOT beam passes through

an AOM driven at 424 MHz and the −1st order beam is used as the depopu-

lation beam. After passing through the AOM, the beam is resonant with the

|F = 1〉 → |F ′ = 2〉 transition frequency. The depopulation beam is coupled
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Figure 3.19: The depopulation beam is derived from the upper horizontal
MOT beam. An AOM driven at 424 MHz is used to downshift the frequency
of the MOT beam to be resonant with the |F = 2〉 → |F ′ = 1〉 transition.

into a single-mode optical fiber and routed to a magnifying telescope com-

prised of a 50 mm and 100 mm lens. The nominal spacing between these two
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lenses is 150 mm, however the spacing is adjustable, allowing us to control the

beam curvature and hence the location of the beam waist after it is focused

by a 63.5 mm lens into the lower chamber glass cell. The power needed in the

depopulation beam is very small, typically around a few nanowatts.

3.2.2 Far-Detuned Laser

We use far-detuned laser beams to create optical dipole traps to confine

atoms. A discussion of the theory used to estimate the depth of these traps is

given in Sec. 2.5.1. There it was seen that in the limit of negligible saturation

and a frequency detuning much larger than the fine structure splitting, the

optical dipole potential is given by

Udip(~r) =
3πc2

2ω3
0

Γ

∆
I(~r).

The laser used to create the optical dipole traps, the Verdi V10, is a

commercially available turn-key system manufactured by Coherent, Inc. This

laser outputs a single-mode (both longitudinally and transversely) with up to

10 W of power at 532 nm. The linewidth is specified to be < 5 MHz and was

measured over 50 ms with a thermally stabilized reference etalon. The output

beam diameter and divergence are specified to be 2.25 mm and < 0.5 µrad,

respectively. The beam is vertically polarized and nearly Gaussian (M2 < 1.1).

The pointing stability, power stability and RMS noise are specified as < 2µrad

/ ◦C, ±1% and < 0.03%, respectively. These laser parameters are summarized

in Table 3.1.
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Output Power > 10 W
Wavelength 532 nm
Linewidth < 5 MHz
Beam Diameter 2.25 ± 10% mrad
M2 < 1.1
Power Stability ±1%
Pointing Stability < 2µrad
Noise (RMS) < 0.03%
Polarization Vertical, > 100 : 1

Table 3.1: Verdi V10 system specifications.

The Verdi V10 outputs radiation at 532 nm which is far blue detuned

from the 87Rb D2 transition frequency. This means that Udip(~r) is positive ev-

erywhere and so a repulsive potential is formed. Our strategy to form 3D trap-

ping potentials with repulsive barriers has been to use several “light sheets” to

construct optical cups that hold the atoms against gravity. During the single-

photon cooling process atoms are transferred from the magnetic trap into an

optical cup. During the course of the experiments we used two main geome-

tries for the construction of the cup: an “optical box” and “optical trough.”

The process used to form these traps is very similar so I will only discuss the

construction of the optical trough.

The optical trough comprises four Gaussian sheets as shown in Fig. 3.20.

The sheets were formed by asymmetrically focusing the beam with cylindrical

lenses. Two sheets travel along the x̂ direction forming a “V”-shape. With

the aid of gravity along the −ẑ direction these sheets confined the atoms along

the ẑ and ŷ directions. Two more vertically elongated sheets traveling along

119



the ŷ direction serve as “end caps” sealing the optical trap along the x̂ direc-

tion. Each beam had approximately 0.7 W of optical power and together with

gravity form a trap ∼ 10 µK deep.

z

x

yg

Atoms can be 
trapped here

Figure 3.20: The optical trough used to catch atoms during the single-photon
cooling process. The trough comprises four blue-detuned Gaussian sheets.
Two sheets travel along x̂ and form a “V”-shape. Two vertical sheets travel
along ŷ and serve as end caps sealing the trough along x̂. With gravity along
ẑ this forms a potential capable of trapping atoms.

All four of the sheets used to form the optical trough are derived from

the output of the Verdi V10. The optics used to distribute and shape the

beam are shown in Fig. 3.21. The Verdi V10 output beam passes through a

series of λ/2 waveplates and polarizing beam splitters allowing us to split the

beam along three paths with the needed intensity ratios. The three paths are
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labeled 1, 2 and 3 in the Fig. 3.21. Beam paths 1 and 2 are used to form

the “V”-shaped portion of the optical trough. Each of these beams passes

through a telescope formed with a 60 mm and 200 mm lens. The beams are

spatially filtered at the focus of the 60 mm lenses. The nominal spacing of

the telescope was 260 mm but the 200 mm lenses were placed on translation

stages, giving control of the beam curvature after the telescope. We used this

degree of freedom to adjust the location of the focus of each beam in the

optical trough. After passing though the telescope, each beam passes through

a cylindrical lens. These two cylindrical lenses were oriented at a right angle

to each other so that when the two beams were combined with a polarizing

beam splitter they would form the correct “V” shape. After being combined,

the two beams were focused into the chamber with a 63.5 mm lens along the x̂

direction. The astigmatism introduced into each beam by the cylindrical lens

caused the beams to have 1/e2 waists of 10 µm × 100 µm at the location of

the optical trough.

The optical end caps were derived from beam path 3. To produce

two end caps we pass this beam through an AOM driven at two frequencies

which were nominally 84 MHz and 123 MHz. After passing though the AOM

unneeded orders were blocked. The unblocked orders passed through a cylin-

drical lens and were focused into the lower chamber by a 50 mm lens. The end

caps travel along the ŷ direction and intersect the two beams which form the

“V”-shape. The spacing of the end caps was typically 110µm, but by changing

the frequencies driving the AOM this could be adjusted. The measured and
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calculated trap depth of this configuration is ∼ 10 µK.
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Figure 3.21: Distribution of the Verdi beams.
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3.3 Magnetic Trap

Two coils are positioned on either side of the lower vacuum cham-

ber to provide the magnetic field needed to operate the lower MOT and to

magnetically trap 87Rb atoms as shown in Fig. 3.22. As discussed earlier,

atoms trapped in the upper MOT are pushed through the differential pump-

ing tube and recaptured in the lower MOT. After recapture they are optically

pumped into the |F = 2,mF = 2〉 state and trapped magnetically. Magneti-

Quadrupole coils

lower 
vacuum 
chamber

Water cooling line

Figure 3.22: Picture of the magnetic trap. Two coils are positioned on either
side of the lower vacuum chamber. The wires visible in this image comprise
the auxiliary coils and optical pumping coils, while the quadrupole coils are
buried beneath. Also visible are the tubes used to pass chilled water over the
coils to regulated their temperature.

cally trapped atoms serve as the initial condition for the single-photon cooling
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process.

The two coils are arranged in the simplest trapping geometry possible:

the anti-Helmholtz configuration. In this setup two coils are positioned a

distance d from each other and carry current of the same magnitude but in

the opposite direction. More details on this coil geometry and resultant field

can be found in Sec. 2.4.

Figure 3.23 shows one of the coils during the construction process,

providing a convenient view of a wound wire sitting on a PVC holder. Each

coil was formed from 14 gauge magnetic wire wound around a PVC core a

quadrupole coil

PVC housing

Figure 3.23: A picture of a quadrupole coil during the construction process,
providing a convenient view of a wound wire sitting on a PVC holder.

total of 176 times. The wire was wound in three sections, each separated by

1/16′′ thick nylon spacers. The coil and base were then covered by a PVC lid

forming a water tight encasement. This design allows the coils to be cooled

by water flowing directly over the wires.

Figure 3.24 is a schematic of the magnetic trap, showing its geometry

125



along a horizontal plane through the center of the coils. In this figure the

heavily cross-hatched regions indicate wire while the lightly cross-hatched ar-

Quadrupole coil

lower 
glass 
cell

nylon 
spacers

wire layer: 
C 
B 
A

Quadrupole coil1.5 mm 
gap

88 mm

 62 mm 

 158 mm 

75 mm 

33 mm 

34 mm
69 mm

Figure 3.24: Schematic of the magnetic trap showing its geometry along a
horizontal plane through the center of the coils.

eas indicate nylon spacers. Wire sections (A) and (B) each consist of a total

of 53 turns while section (C) consists of a total of 70 turns. More detail on

the construction of these coils can be found in [83, 84].

As discussed in Sec. 2.4, the field near the center of this arrangement

is well approximated with a linear gradient whose value varies with direction.

The calculated value of the gradient along the axis of symmetry is 9.7 G/(cm A)

and 4.8 G/(cm A) along the radial direction. These values were calculated

using Eq. 2.39 and the geometry in Fig. 3.24 and agree well with measured

values [84].

The two coils are in series with three power supplies (Lambda GEN80-
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19) connected in parallel. This arrangement allows us to pass 57 A of current

through the coils, although in practice we never exceeded 30 A. The current was

regulated with 7 power op-amps (OPA549) placed in parallel and controlled

by a homebuilt PID circuit. The details of this current regulator are found in

[84].

Each coil has a resistance of 0.29 Ω. With a maximum current of 30A

running through each, 261 W of power is dissipated in the form of heat. To re-

move this heat water continually flowed across the coils and into a commercial

water chiller (Neslab MerlinM100) with a total cooling capacity of 3500W.

3.4 Imaging Systems

In Sec. 2.8 I discussed the physics of absorption and fluorescence imag-

ing and how we use the raw data collected to calculate values of interest, such

as total atom number. This section deals with the origin of the beams used in

the imaging process, their beam paths, and the optics and CCD cameras used

to record images.

3.4.1 Vertical Imaging

The vertical probe beam is derived from the upper MOT horizontal

slave laser as discussed in Sec. 3.2.1.3 and shown in Fig. 3.13. This beam has

about 3.5 mW of total power and is tuned to the |F = 2〉 → |F ′ = 3〉 transition

frequency. As shown in Fig. 3.25, this beam passes through a λ/2 waveplate

allowing it to be combined with the push beam using a PBSC. Before entering
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Vertical 
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downward (into page) 
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Figure 3.25: Vertical probe beam path. The vertical probe beam passes
through a lens and then combines with the push beam with a PBSC. Both
beams are directed downwards through the differential pumping tube. Af-
ter passing through the atomic sample of interest the vertical probe beam is
directed towards the imaging optics and CCD camera.

the PBSC, the vertical probe beam passes through a 175 mm lens which in

conjunction with a mirror focuses and directs this beam vertically downward

through the differential pumping tube. The beam expands in the differential

pumping tube and has a waist of approximately 15 mm at the location of the

atoms. After passing through the atomic cloud the beam is directed to a CCD

camera where it is imaged with an objective lens giving a magnification factor

of 4.33×. The CCD camera used is an Alta U47+ manufactured by Apogee

Instruments, Inc. This camera consists of a 1024×1024 pixel array (each pixel

is 13µm square) cooled with a TEC to −20◦C to reduce dark counts.
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3.4.2 Horizontal Imaging

The horizontal probe beam is derived from the upper MOT diagonal

slave laser as discussed in Sec. 3.2.1.4 and shown in Fig. 3.14. This beam

has about 5 mW of total power, a diameter of 19 mm, and is tuned to the

Lower 
horizontal 

MOT beam

Horizontal 
probe beam

Lower 
vacuum 
chamber

f = 120 mm

4x objective

CCD

PBSC

PBSC

f = 120 mm

Figure 3.26: Horizontal probe beam path. The horizontal probe beam com-
bines with a horizontal lower MOT beam and passes through the atomic sam-
ple. The probe beam is then directed towards the imaging optics and CCD
camera.

|F = 2〉 → |F ′ = 3〉 transition frequency. As shown in Fig. 3.26 this beam

combines with a horizontal lower MOT beam with a PBSC before entering the

lower vacuum chamber. After passing through the cloud, the horizontal probe

beam is picked off by a second PBSC and directed to the imaging optics. The

beam is relayed by a pair of 120 mm lenses and imaged on a CCD camera with
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a 4× objective lens. The camera used for horizontal imaging is an Apogee

AP9e. This camera consists of a 3072 × 2048 pixel array (each pixel is 9µm

square) cooled with a TEC to −20◦C.
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Chapter 4

Single-Photon Atomic Cooling in 87Rb

This chapter discusses the application of single-photon atomic cooling

to magnetically trapped 87Rb. It took several iterations of the experiment to

arrive at an apparatus design and procedure which produced cooling limited

only by the dynamics of the atoms in the magnetic trap. As such, the specific

details of the apparatus and procedure evolved as we learned and improved the

process. To make clear to the reader when these changes were made and their

effect on the single-photon cooling process, I will present the experimental

work in roughly chronological order. To this end, I begin with a discussion

outlining the general steps used to cool 87Rb via single-photon atomic cooling

common to all experimental iterations. This discussion serves as a starting

point for explaining the process and any detail or major deviations from this

procedure which we developed will be explained in the text in the appropriate

context.

4.1 Overview of Single-Photon Cooling 87Rb

In this section I move beyond the general descriptions given in Ch. 1 dis-

cussing the single-photon cooling process and present a version of the scheme
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used to cool 87Rb experimentally, emphasizing those features common to all

iterations of the experiment. This section represents an updated version of

our original paper proposing a single-photon cooling scheme appropriate for

87Rb [94]. In all iterations of the experimental process a sample of magneti-

cally trapped 87Rb was transfered into a conservative optical dipole trap via

the single-photon cooling process. The shape and construction of the optical

dipole trap varied with each iteration. For the sake of simplicity, I will use a

generic optical potential in this overview of the single-photon cooling process

and describe the details of each iteration in later sections.

To obtain the magnetically trapped sample of 87Rb, several steps are

taken. Atoms are initially loaded into the upper MOT from room temperature

87Rb vapor. A discussion of the design of the upper chamber and source of

Rb can be found in Sec. 3.1.1. As the upper MOT is loaded, the push beam

transfers 87Rb atoms into the lower chamber where they are recaptured in the

lower MOT. When optimized, we are able to collect atoms in the lower MOT at

a rate of roughly 108 atoms/sec. This rate drops off after a few seconds due to

saturation effects. When loading the lower MOT we run approximately 1.6 A

of current through the lower magnetic quadrupole coils thereby producing a

magnetic field gradient of B′ = 8 G/cm (see Sec. 2.4 and Sec. 3.3 for more

details). The lower MOT beams are typically detuned −15 MHz from the

|F = 2〉 → |F ′ = 3〉 cycling transition, have a waist of ∼ 1 cm and an optical

power of 7 mW each.

We typically operated the lower MOT loading stage for approximately
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1 s, after which time ∼ 108 87Rb atoms were present. To efficiently trans-

fer these atoms into the magnetic trap they underwent two more prepara-

tory steps in the lower chamber. The first of these is optical molasses (see

Sec. 2.5.2.2). This step reduces the temperature of the atoms from 100-150µK

to approximately 10µK. During the optical molasses stage the MOT beams

are reduced in intensity by approximately 1/2, the frequency detuning is in-

creased to −50 MHz from the |F = 2〉 → |F ′ = 3〉 transition frequency, and

the magnetic field is shut off. The duration of this stage was normally 5 ms,

although, as will be seen in Sec. 4.4, we adjusted the duration to control the

temperature of the magnetically trapped atoms. Optical molasses leaves the

internal state of the atoms distributed among the various Zeeman magnetic

sublevels. To maximize loading into the magnetic trap we optically pump

atoms into the |F = 2,mF = 2〉 state. This is accomplished by producing

a weak, uniform magnetic field with the quadrupole auxiliary coils to define

a quantization axis. Then a σ+ polarized beam tuned to resonance with the

|F = 2〉 → |F ′ = 2〉 transition frequency is sent along this axis, driving atoms

into the |F = 2,mF = 2〉 dark state. This process is very fast, taking place

in approximately 100µs, and results in an increased transfer efficiency at the

price of slightly heating (∼ 5µK) the atomic sample.

After being magneto-optically trapped, cooled, and placed into the

|F = 2,mF = 2〉 state, the atoms are ready to be magnetically confined.

This is accomplished by turning off all optical fields and ramping the current

in the magnetic quadrupole coils to 10 A in a few milliseconds. This cur-

133



rent results in a magnetic field gradient of B′ = 48 G/cm. Mode mismatch

between the optically pumped atomic sample and the magnetic trap results

in heating. The final temperature of the magnetically trapped sample was

typically in range of 50-100µK. Under these conditions, the 1/e2 radius of

the magnetically trapped atomic cloud was ∼ 500 µm. These atoms serve as

the initial condition for further cooling via the single-photon cooling process

during which time they are transfered into an optical trap.

Then next step in the single-photon cooling process involves position-

ing a conservative optical dipole trapped in the wings of the magnetically trap

sample. As stated in the introduction to this chapter, the details of the opti-

cal dipole trap evolved as the experiment progressed. To keep this overview

simple, I will introduce an optical trap representative of the actual potentials

used which encompasses their key features. The details of each iteration of

the optical trap used during the experiments are discussed in the next several

sections. For now, consider a blue detuned optical sheet placed below the mag-

netically trapped atomic sample. Because the sheet is tuned below the atomic

resonance frequency, it produces a repulsive barrier. This barrier is capable of

levitating the atoms with sufficiently high optical intensity. Figure 4.1(a) il-

lustrates the geometry under consideration. Figure 4.1(b) shows the potential

landscape for atoms in the |F = 2,mF = 2〉 state due to the magnetic field

gradient, gravity, and the optical sheet. For comparision, Fig. 4.1(c) shows

the potential landscape for atoms in the |F = 1,mF = 0〉 state due to gravity

and the optical sheet. Notice that atoms in this state are decoupled, to first
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Figure 4.1: Overview of the single-photon cooling process. (a) Cross-sectional
view of magnetically trapped atoms above a repulsive optical sheet. (b) Effec-
tive potential along the vertical (ẑ) axis for atoms in the |F = 2,mF = 2〉 state
due to the combined potentials of a quadrupole magnetic field, gravity, and a
repulsive optical sheet. (c) Potential for atoms in the magnetically decoupled
|F = 1,mF = 0〉 state.

order, from the magnetic field and the tilt in the potential is due entirely to

gravity.

The idea behind single-photon atomic cooling is to transfer the mag-

netically trapped atoms, which are in the |F = 2,mF = 2〉 state, into the

magnetically decoupled |F = 1,mF = 0〉 state preferentially when they are

near their classical turning point and close to the optical sheet. There are

two key ideas here that I want to make clear. First, by transferring the atoms

from the magnetically coupled to the magnetically decoupled state near their
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turning points, they will have little residual kinetic energy. After the state

transfer the atoms will fall onto the optical sheet which holds them against

gravity. Second, by transferring the atoms near the sheet they will acquire

little energy due to free fall. The state transfer is accomplished optically with

the depopulation beam (see Sec. 3.2.1.7).

The depopulation beam is tuned near the |F = 2〉 → |F ′ = 1〉 transition

frequency. Correspondingly, its function is to transfer atoms from the |F =

2,mF = 2〉 state into the excited |F ′ = 1,mF ′ = 1〉 state. Once excited, the

atoms quickly decay (τ ∼ 26 ns). Calculation of the decay branching ratio is

discussed in Sec. 2.6 and the results are summarized in Fig. 2.12. As indicated

in this figure we can optically pump 42% of the atoms into the |F = 1,mF = 0〉

state in a single cycle. Experimentally we do somewhat better because any

atom which decays into the F = 2 manifold is reexcited by the depopulation

beam and has another chance to decay into the F = 1 manifold. We find close

to 1/2 of the atoms decay into the desired |F = 1,mF = 0〉 state.

Ensuring that the atoms are transfered into the magnetically decoupled

state near the repulsive optical sheet is a simple matter. One only needs to

form a second optical sheet from the depopulation beam and place it slightly

above the repulsive sheet (see Fig.4.2). Transferring the atoms preferentially at

their turning points is also accomplished in a straightforward manner. In this

geometry, one would initially place the two sheets below the magnetic trap

beyond the turning point of even the most energetic atom and then slowly

sweep the pair of sheets vertically towards the center of the magnetic trap. If
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Figure 4.2: Depopulation sheet positioned a distance h above the repulsive
sheet. To cool, both sheets are slowly swept vertically towards the center of
the magnetic trap center.

done slowly (see Sec. 1.4 for a discussion on the relevant time scales) the atoms

first encounter the depopulation beam near their turning points. The reader

may be alarmed because in this description the optical sheet only confines

the atoms vertically. There is no cause for alarm, because as described in

Secs. 4.2-4.4, the actual optical potentials used during the experiment formed

3-D confining potentials.

The following three sections outline the development and experimental

results of this cooling process. Each experimental iteration shares its main

features with the description just given, only differing in details which will be

explained in context.
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4.2 Crossed Dipole Beam Configuration

This section reports on our first experimental implementation of single-

photon atomic cooling with a magnetically trapped sample of 87Rb. While

the results presented in this section did not merit publication, they did offer

the first evidence that the single-photon cooling process worked. We felt en-

couraged that with improvements to the experimental apparatus and process,

single-photon atomic cooling could be made an efficient method. Because of

this, these results are presented with somewhat less rigor than in the next two

sections which represent published work. In this experiment, as in the later

iterations, we transfered atoms initially in the |F = 2,mF = 2〉 state from a

large volume magnetic trap into a smaller volume optical dipole trap via the

single-photon cooling process.

During this iteration of the experiment the optical dipole trap was

formed from two crossed laser beams at a wavelength of 1064 nm. Each beam

originated from a multi-mode ytterbium fiber laser with a maximum output

power of 10 W and a spectral bandwidth < 1 nm. This optical trap was placed

above magnetically trapped atoms as shown in Fig. 4.3. Because the laser

output frequency is well to the red of the D transition lines in Rb, it formed

an attractive potential whose depth can be found from Eq. 2.53 and knowledge

of the trap geometry. Figure 4.4 shows the calculated potential landscape for

atoms in the |F = 2,mF = 2〉 state due to the magnetic and optical traps

as well as gravity. In this figure, parameters consistent with experimental

values are assumed. The current in the magnetic coils is 15 A, resulting in
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Figure 4.3: Schematic of crossed laser beams above a cloud of magnetically
trapped atoms. Gravity is in the −ẑ direction as shown in the figure.

a magnetic field gradient of B′ = 72 G/cm (see Sec. 2.4 for a definition of

this constant). Each dipole beam had 3.5 W of power and a 1/e2 waist of

approximatly 150µm.

As shown in Fig. 4.4 a small dimple is evident on the right hand side

of the potential, however it is too small to create a bound state. Observe

that another state, |F = 1,mF = 1〉, does have a bound state under identical

conditions. The potential landscapes for the two states are shown in Fig. 4.5.

The reason for formation of the bound state is that the magnetic tilt is only

half of the value of the |F = 2,mF = 2〉 state.

To transfer atoms from the magnetic trap into the optical trap, we

added a depopulation beam parallel to a dipole beam. During the experimen-
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Figure 4.4: The potential landscape for atoms in the |F = 2,mF = 2〉 state
due to the magnetic and optical traps as well as gravity.

tal runs reported here, the depopulation beam had approximately 75 nW of

power, a vertical 1/e2 waist of 16µm, and a horizontal waist of 54µm. This

corresponds to a peak intensity of 5.5 mW/cm2, about twice the transition

saturation intensity. As indicated in Fig. 4.6 the position of the depopuation

beam relative to the optical dipole beams is an important parameter. If not

positioned correctly, transfered atoms will gain energy as they fall down the

potential hill, possibly leading to trap loss. We found that offsetting the de-

population beam ∼ 30 µm below the center of the optical dipole beams yielded

the largest transfer of atoms.

At the start of the cooling process the centers of the magnetic trap and
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Figure 4.5: The effective potential for the combined optical and magnetic traps
as well as gravity for atoms in the |F = 2,mF = 2〉 state (upper black line)
and atoms in the |F = 1,mF = 1〉 state (lower red line).

optical dipole trap were separated by ∼ 750 µm. To initiate the single-photon

cooling process the magnetic trap was moved upwards, towards the center of

the dipole trap, by linearly ramping the current in a coil positioned above

the magnetically trapped atoms. Through experimentation we found that a

ramp duration of 0.5 - 1 s transfered the most atoms into the optical dipole

trap via the single-photon cooling process. As will be discussed in more detail

later, this ramp rate struck the optimal balance between allowing the atoms

to explore phase space and limiting trap loss due to heating and other effects.

To image and count the transfered atoms, we isolated them from those

which had not undergone the single-photon cooling process. First, all mag-
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Figure 4.6: Transition induced by the depopulation beam, depending on the
spatial location of the beam. The solid line is the preferred location and will
lead to less heating than the dashed line.

netic fields were shut off to allow those atoms not optically trapped to fall

for 80 ms under the influence of gravity. Then we blew away any residual

atoms in the F = 2 manifold by application of a beam resonant with the

|F = 2〉 → |F = 3〉 transition. The remaining atoms had undergone the

single-photon cooling process. These atoms were repumped into the F = 2

manifold and placed in freezing molasses. The resultant fluorescence light was

collected and imaged on a CCD camera. Figure 4.7 indicates the results of

this experiment. Figure 4.7(a) was taken with no depopulation beam present

during the experimental sequence. As expected, this image indicates that no

atoms were transfered into the optical trap. Figure 4.7(b) was taken with the
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depopulation present and it indicates that atoms were transfered during the

100 µm

(a)

100 µm

(b)

Figure 4.7: Fluorescence image of atoms transfered into the optical dipole trap
via the single-photon cooling process (a) without and (b) with the depopula-
tion beam present. In these images false color is used to represent atomic
density. Red represents the densest region.

single-photon cooling process. This image indicates that the optically trapped

atomic cloud had a 1/e radius of roughly 123µm, consistent with the known

dipole beam waists of 150µm. Additionally, time-of-flight measurements (see

Sec. 2.8) indicate the temperature of the transfered sample to be 12µK. Fig-

ure 4.8 shows the raw data used to measure this temperature. Unfortunately,

the absolute atom number could not be determined because the number of

transfered atoms was too small for our system to measure.

This work served as experimental evidence that the single-photon cool-

ing process worked and gave us encouragement that with improvements we

could expect to transfer a larger number of atoms. Indeed, the next two

sections discuss experimental iterations with greatly improved performance,
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Figure 4.8: Width of atomic distribution as a function of expansion time for
atoms cooled via the single-photon cooling process in the cross beam configu-
ration. Black squares indicate raw data while the red line shows the best fit.
See Sec. 2.8.1 for details on the function used to fit this data.

allowing for far more quantitative analysis.

The primary limitation in this iteration of the experiment was the short

lifetime of the optical dipole trap (∼ 0.7 s). This lifetime set the timescale over

which we could accumulate and hold atoms. After an unsuccessful attempt at

increasing the lifetime of this attractive optical dipole trap we decided to use

our Verdi V10 laser (see Sec. 3.2.2) to form a repulsive trap to transfer the

atoms into. Use of this technique did result in a substantial increase in the

lifetime of optically trapped atoms (∼ 3.7 s), allowing us to accumulate atom
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numbers sufficiently large to quantify. This work serves as the topic of the

next section.

4.3 “Optical Box” Configuration

This section discusses the second major experimental iteration [95].

The major improvement made in this iteration was a change in the construction

of the optical dipole trap. We stopped using the multi-mode ytterbium fiber

lasers (1064 nm) to form an attractive potential and began using the Verdi

V10 (523 nm) to form a repulsive potential to transfer the atoms into. The

initial steps of loading atoms in to the magnetic trap was the same as that

used in the previous section and described in Sec. 4.1.

A thermal cloud of 87Rb atoms is initially produced in a magneto-

optical trap and then cooled in optical molasses. Subsequently atoms in the

|F = 2〉 hyperfine ground state are loaded into a magnetic quadrupole trap

with a radial field gradient of 75 G/cm. We trap approximately 1.7×108 atoms

at a temperature of 90µK in a cloud with a 1/e radius of 550µm.

After the magnetic trap is loaded, an optical dipole trap is positioned

above it. The optical dipole trap originates the Verdi V10 which is split

into three beams. Each beam passes through a dual-frequency acousto-optic

modulator, and the first order deflections are tightly focused in one dimension

to form parallel sheets. Each individual sheet has a 1/e2 beam waist of 10µm

× 200µm and a power of 0.7 W. The three pairs of sheets are crossed to form

a repulsive “box-like” potential, with dimensions 100 µm × 100 µm × 130 µm
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and a depth of kB × 10 µK, shown pictorially in Fig.4.9(a).

Figure 4.9: (a) Cross-section of the optical box positioned above the cloud of
magnetically trapped atoms. In this illustration, two pairs of Gaussian laser
sheets propagate parallel to the x-axis. A third pair (not visible) propagates
parallel to the y-axis and completes the optical box. (b) Absorption image
along the z-axis of approximately 1.5 × 105 atoms trapped in the optical box.

In this cross sectional view only two of the three pairs of sheets are

visible. The pair confining the atoms along the ẑ (vertical) direction are re-

ferred to as the horizontal sheets. Likewise, the pair confining the atoms along

the ŷ direction are referred to as the vertical sheets. Both the horizontal and

vertical sheets propagate along the x̂ axis. To confine the atoms along the

x̂ direction, two more sheets elongated vertically propagate along the ŷ axis

serving as “end caps.”

Figure 4.10 shows the calculated optical dipole potential due to the
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Figure 4.10: Calculated optical dipole potential due to the optical box under
experimental conditions. (a) 2-D slice of the optical dipole potential in the
x-y plane located at z = −50 µm. (b) Potential along ẑ with x = y = 0. (c)
Potential along x̂ with y = 0 and z = −50 µm. (d) Potential along ŷ with
x = 0 and z = −50 µm.

optical box under experimental conditions. Quadrant (a) of Fig. 4.10 displays

a 2-D slice of the calculated optical dipole potential in an x-y plane located

at z = −50 µm (the location of the center of the lower horizontal sheet).

The central well present in this figure is used to confine the transfered atoms.

Figure 4.10(b) displays the calculated optical dipole potential along the ẑ

direction midway between the vertical sheets and end caps (x = y = 0). The

two peaks in this graph reflect the potential due to upper and lower horizontal
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sheets. Figure 4.10(c) shows the calculated potential along the x̂ direction

with y = 0 and z = −50 µm. Similarly, the two peaks reflect the potential due

to the end caps. The slight curvature of the potential (away from the peaks)

is due to the finite Rayleigh length of the lower horizontal sheet. This sheet

is focused asymmetrically and therefore has a Rayleigh length associated with

each transverse dimension. The Rayleigh length associated with the tight

vertical focusing is ZR = 590µm. Finally, Fig. 4.10(d) shows the potential

along the ŷ direction with x = 0 and z = −50 µm. Here, the two peaks

are due to the vertical sheets. The pronounced curvature of the potential

(away from the peaks) is due to the 200µm horizontal beam waist of the lower

horizontal sheet.

The accumulation of atoms into the optical box, a conservative trap,

requires an irreversible step. This need is met by optically pumping the atoms

that transit the optical box to the F = 1 manifold with the depopulation

beam. The beam is near resonant with the 5S1/2(F = 2) → 5P3/2(F
′ = 1)

transition and focused to a 1/e2 waist of 8 µm × 200 µm at the center of the

box. Magnetically trapped atoms in the F = 2 manifold are excited by the

depopulation beam and decay with 84% probability to the F = 1 manifold

(mF = 1, 0), where they are no longer on resonance with the depopulation

beam. Because the gradient of the Zeeman shift of these states is smaller

than that of the initial state, the contribution from the magnetic field to

the total potential is reduced, creating a trapped state in the optical box in

manner identical to that discussed in the previous section. Figure 4.11 show
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the potential landscape due to the combined magnetic field, optical dipole

trap, and gravity for atoms in the |F = 2,mF = 2〉 and |F = 1,mF = 0〉

states, as well as the desired position of the state transfer.
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Figure 4.11: The potential landscape due to the combined magnetic field,
optical dipole trap, and gravity for atoms in the |F = 2,mF = 2〉 and |F =
1,mF = 0〉 states. Atoms are transfered from the |F = 2,mF = 2〉 state into
the |F = 1,mF = 0〉 state by the depopulation beam at the position indicted
by the dashed vertical line.

As atoms accumulate in the optical box, the outermost trajectories of

the magnetic trap are depleted by the depopulation beam. For maximum load-

ing into the optical box, we adiabatically translate the center of the magnetic

trap towards the optical box by applying a linear current ramp to an auxiliary

magnetic coil located above the atoms.

149



Before imaging, we isolate the optically trapped atoms by switching

off the magnetic trap, allowing untrapped atoms to fall under the influence

of gravity for 80 ms. Additionally, the depopulation beam is turned off and a

beam resonant with the 5S1/2(F = 2) → 5P3/2(F
′ = 3) transition blows away

any residual atoms in the F = 2 manifold. The remaining atoms are those

which have undergone single-photon atomic cooling. These atoms are pumped

to the F = 2 manifold and illuminated with freezing molasses for 30 ms. The

resulting fluorescence is imaged on a charge-coupled device (CCD) camera and

integrated to yield atom number. Spatial information is obtained by imaging

with absorption rather than fluorescence as in Fig. 4.9(b).

The density of atoms loaded into the optical box via single-photon

atomic cooling is sensitive to multiple parameters. The intensity of the de-

population beam strongly affects the final density; it must be set to balance

efficient pumping into the F = 1 manifold with trap loss due to heating and

other loss mechanisms. A more detailed discussion of this point is given in the

next section. Figure 4.12 shows a plot of the number of atoms loaded into the

optical box via single-photon atomic cooling as a function of the power in the

depopulation beam. In this experimental configuration, we maximize density

in the optical box with a peak depopulation beam intensity of approximately

8 mW/cm2.

In addition to the depopulation beam intensity, transfer into the optical

box is highly affected by both the duration and range over which the mag-

netic trap is translated. The optimal duration of this translation is mainly
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Figure 4.12: The number of atoms loaded into the optical box via single-photon
atomic cooling as a function of the power in the depopulation beam.

dependent on two competing factors. Long translation times permit phase-

space exploration by atoms in the magnetic trap, allowing a more complete

exchange of kinetic for potential energy before an atom encounters the optical

box. However, the finite lifetime of atoms in the optical box (τ = 3.7 ± 0.1 s

in the presence of the depopulation beam) limits the translation time. We

achieve highest density with a translation time of approximately 1.2 s. Given

this time scale, the translation range loading the largest atom number into the

optical box is empirically determined. We translate the optical box from an

initial separation (relative to the center of the magnetic trap) of 800 µm to a

final separation of 100 µm.
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To study the dynamics of the loading process, we look at the incremen-

tal loading for a constant translation velocity. We start with the center of the

magnetic trap 800µm below the optical box and then translate it vertically at

a velocity of 750 µm/s. Figure 4.13 displays the fraction of atoms captured as

a function of the final separation between the magnetic trap and the optical

box. The slope of this plot indicates that the local loading rate increases with

decreasing separation until about 100 µm. Additionally, it is clear from this

plot that atom capture is not increased by translating beyond this point.

We study loading without translating the box (i.e. at a fixed sepa-

ration) to understand the dynamics of single-photon atomic cooling in more

detail. Figure 4.14 shows the number of atoms loaded into the optical box as

a function of time for several separations. All curves exhibit a positive initial

slope indicative of the local loading rate. As the magnetic trap is depleted

by the depopulation beam, the loading rate decreases and the slope becomes

dominated by trap losses. We find both the loading rate and the trap loss

rate to be inversely related to the separation between the magnetic trap and

optical box centers. The former reflects the dependence of the loading rate on

the local density of magnetically trapped atoms. The latter suggests a higher

rate of escape out of the optical box for smaller separations. This may be

attributed in part to an increased temperature caused by collisions between

atoms in the optical box and atoms in the magnetic trap. For the two smallest

separations (200 µm, 400 µm) we calculate initial collision rates of (0.8 Hz,

0.5 Hz) respectively. However, these rates diminish as the depopulation beam
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Figure 4.13: Incremental atom capture at a fixed translation velocity. The
center of the magnetic trap is initially displaced 800 µm below the optical
box and is translated vertically at a velocity of 750 µm/s. The endpoint of
the translation is varied, and the atom capture, normalized to the maximum
number, is plotted as a function of the final separation between the traps.
Error bars indicate statistical uncertainties.

reduces the density of magnetically trapped atoms in the vicinity of the optical

box. We thus consider collisions non-negligible for t < (250ms, 500ms) which

provides an upper bound of (0.2, 0.25) collisions per atom in the optical box.

A large fraction of these collisions will cause immediate trap loss on account

of the shallow box depth ( 10 µK), but a few will raise the temperature. We

believe, however, that this effect is overshadowed by atoms entering the op-

tical box far from their classical turning points. In contrast to adiabatically
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translating the magnetically trapped atoms toward the optical box (as in Fig.

4.13), which yields a kinetic energy distribution independent of translation

endpoint, we abruptly turn on the optical box and depopulation beam for the

data in Fig. 4.14. In this situation, many atoms now transit the optical box

far from their classical turning points, and if captured they contribute to an

increased kinetic energy distribution and rate of escape.

Figure 4.14: Captured atom number as a function of loading time. Data are
given for separations between the optical and magnetic trap centers of 800µm,
(▲), 600µm (●), 400µm (■), and 200µm (▼). Error bars indicate statistical
uncertainty, and dashed curves are drawn through the data points to guide
the eye. The slopes are initially dominated by the loading rate into the optical
box. After some time, the loading rate decreases due to the depletion of the
magnetic trap, and the slopes become dominated by escape out of the box.

We performed Monte-Carlo simulations of the dynamics in the mag-
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netic trap and transfer into the optical box. Atom trajectories are propagated

through phase-space, in which a subspace representing trapped states in the

optical box has been defined. As atoms reach this subspace they are counted

as trapped. These simulations show an inverse relationship between the load-

ing rate and the separation between the magnetic trap and optical box centers

in agreement with the experimental results.

Of utmost importance to the utility of this cooling technique is its

ability to compress phase-space. With the single-photon atomic cooling scheme

described in this section, we extract 1.5 × 105 atoms at a temperature of

7 µK from the magnetic trap. We compare this with the number of atoms

captured out of the magnetic trap without the depopulation beam. This is

just a conservative dipole trap: atoms that are caught inside the box at low

enough kinetic energy will be trapped, while all others will be lost. We measure

a factor of 23 ± 3 increase in atom number using the single-photon atomic

cooling method with nearly identical velocity distributions. We do not resolve

the internal magnetic states in our measurement. The atoms in the magnetic

trap are in the F = 2 manifold, but can be in the mF = 1 and mF = 2

magnetic sublevels. The atoms caught in the optical box are in the F = 1

manifold but can be in the mF = 1 and mF = 0 magnetic sublevels. The

factor of 23 refers to atom number, not directly to phase space density. The

increase in the latter would be a factor of 12 in the worst case scenario, if all

the atoms in the magnetic trap were in the F = 2, mF = 2 state and the

atoms in the dipole trap were equally distributed between the two magnetic
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sublevels.

The increase in phase-space density demonstrated here is limited by

technical constraints and does not represent a fundamental limit to this pro-

cess. In the next section an improved version of the experiment is presented in

which the atomic transfer efficiency is limited only by the dynamics of atoms

in the magnetic trap.

4.4 “Optical Trough” Configuration

This section discusses the third, and current, experimental iteration of

the single-photon cooling process [96]. As will be discussed in this section,

the transfer efficiency of this iteration of the experiment is limited only by the

dynamics of the atoms in the magnetic trap. In other words, all atoms which

reach the depopulation beam with an energy less than the optical trap depth

are cooled and transfered into the optical trap via the single-photon cooling

process. The major changes made in this iteration were in the construction and

placement of the optical dipole trap and the method of introducing magnet-

ically trapped atoms into the depopulation beam near their classical turning

points. Both of these improvements are discussed in more detail below. To-

gether these changes resulted in a system performance increase of a factor of

15.

As in the previous two iterations, atoms were initially loaded into a

MOT, cooled with optical molasses, optically pumped, and then transfered

into the magnetic trap. While we were able to vary both the number NB and
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temperature TB of atoms loaded into the magnetic trap, typical values used

during these experiments were NB ≈ 5 × 107 atoms and TB ≈ 40µK. The

number and temperature of atoms loaded into the magnetic trap was varied

by controlling the MOT beam detuning.

The presence of the repump beam during the MOT, optical molasses,

and optical pumping stages ensures that the magnetically trapped atoms are

in the 52S1/2(F = 2) hyperfine manifold. This manifold contains two mag-

netically trappable states: |F = 2,mF = 2〉 and |F = 2,mF = 1〉. The

purpose of the optical pumping stage is to populate the |F = 2,mF = 2〉 state

preferentially over the |F = 2,mF = 1〉 state. While helpful, this process

is not 100% efficient and so there is a distribution of the two states in the

magnetic trap. Later in this section we will calculate the amount of phase

space compression achieved by the single-photon cooling process. To do this,

we must find the phase space density of the atoms in the magnetic trap. This

calculation requires knowledge of the number of magnetically trapped atoms

in the |F = 2,mF = 2〉 state. Unfortunately, our imaging method does not

distinguish between atoms in the |F = 2,mF = 2〉 and |F = 2,mF = 1〉 states,

so the atoms in these two states must be separated before imaging to get the

number of interest. We achieved this separation by setting the magnetic field

gradient to a value capable of levitating atoms in the |F = 2,mF = 2〉 state

against gravity, but not atoms in the |F = 2,mF = 1〉 state. Figure 4.15

shows the number of atoms remaining in the magnetic trap as a function of

the current in the quadrupole coils. As seen in this figure, below ≈ 8 A a sud-
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den decrease in atom number occurs. This is the current value below which
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Figure 4.15: Number of atoms in magnetic trap as a function of the current in
the quadrupole coils. Below a current of ≈ 8 A the field gradient is insufficient
to support atoms in the |F = 2,mF = 1〉 state against gravity.

atoms in the |F = 2,mF = 1〉 are not supported against gravity. Likewise

currents below ≈ 4 A do not support atoms in either state against gravity.

Using this data we determined that approximately 70% of the magnetically

trapped atoms are in |F = 2,mF = 2〉 state and the remaining fraction are in

the |F = 2,mF = 1〉 state.

The optical dipole trap evolved in this iteration of the experiment from

an “optical box” into an “optical trough.” At the time we were using the

optical box, we discovered that a box lid was not needed to confine atoms in

all of the magnetic sublevels, gravity was sufficient to do the job for some. By

removing the lid, we were able to divert more optical power from the laser

158



used to construct it into the remaining five sheets, deepening the trap. The

optical trough extends this line of reasoning by only requiring the use of four

Gaussian sheets. Fig. 4.16 illustrates the geometry of the optical trough. Two

end caps

g

optical trough

x
y

z

Figure 4.16: Geometry of the optical trough. Two Gaussian laser sheets in
a ‘V’ shape propagate along the x̂ direction. Two more vertically elongated
sheets propagating along the ŷ axis intersect the ‘V’ and serve as end caps.
The end caps are separated by 110µm. With gravity along the ẑ-axis, this
trough creates a trapping potential in all directions.

Gaussian laser sheets in a ‘V’ shape propagate along the x̂ direction. Two

more vertically elongated sheets propagating along the x̂ axis intersect the ‘V’

and serve as end caps. The end caps are separated by 110µm. With gravity

along the z-axis, this trough creates a trapping potential in all directions. As

before, each sheet is formed by asymmetrically focusing a circular beam with a

cylindrical lens (see Fig. 3.21). At the location of the trap the sheets have 1/e2
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waists of 200 × 10 µm. The measured and calculated trap depth is ∼ 10µK.

Figure 4.17 shows the calculated potential of this optical dipole trap

in the ŷ-ẑ plane centered between the end caps along x̂. This potential was

calculated using Eq. 2.53, the trap geometry, and assuming each sheet had
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Figure 4.17: “Optical Trough” potential in the ŷ-ẑ plane centered between the
end caps.

1 W of optical power. The presentation in this figure requires explanation.

In this figure gravity (−ẑ) points from the lower corner of the plot towards

the vertex of the potential. The trough levitates atoms against gravity and

confines them along the ŷ dimension with the aid of gravity. Figure 4.18 show

the same potential from a side perspective allowing one to see the potential

depth more easily. Figure 4.19(a) shows the calculated potential along a line

parallel to ẑ intersecting the trough at its geometric center. Figure 4.19(b)

shows the calculated potential along the trough vertex. The curvature of the

base of this potential is due to the finite Rayleigh length of the beams forming

160



0 -100 µm
100 µm

Potential (µK)

0

10

20

30

Figure 4.18: Side view of the optical trough potential displaying the trap
depth.

the ‘V’.

One further change made during this iteration was that we placed the

optical trough below the magnetically trapped atoms in contrast to the last

section in which the optical box was placed above the magnetic trap. Placing

the trough below the magnetically trapped atoms is a more favorable geometry

because atoms do not have to climb an optical potential hill to enter the optical

trap. This is clearly advantageous for this cooling process because atoms

climbing a potential hill subsequently fall down it, increasing their kinetic

energy in the process. This places a lower limit on the final temperature of

the sample.

As described in the previous two sections, the depopulation beam drives

atoms from the |F = 2,mF = 2〉 state into the 52S1/2(F = 1) manifold. It

does this by exciting them into the |F ′ = 1,m′
F = 1〉 state from where they
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Figure 4.19: (a) Calculated potential along a line parallel to ẑ intersecting
the trough at its geometric center. (b) Calculated potential along the trough
vertex.

spontaneously decay. Atom decay from this excited state into the 52S1/2(F =

1) manifold with 84% probability (see Sec. 2.6). The remaining atoms decay

back into the 52P3/2(F = 2) manifold and are subsequently re-excited by the

depopulation beam. Because all atoms in the 52S1/2(F = 1) manifold couple

to the magnetic field more weakly than atoms in the initial |F = 2,mF = 2〉

state, they could in principle all be trapped. However, the branching ratio

causes the final population to be predominantly in the mF = 0, 1 sublevels.

For the purpose of calculating the final phase-space density, we only consider

atoms in the mF = 0 sublevel.

The depopulation beam travels parallel to the two Gaussian sheets

which form a ‘V’ as shown in Fig. 4.20. It is located a distance hp above the

trough vertex and focused to a 1/e2 waist of approximately 10µm. This beam

is detuned 35 MHz below the 52S1/2(F = 2) → 52P3/2(F
′ = 1) transition.
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Figure 4.20: Geometry of the optical trough and depopulation beam. The
depopulation beam is parallel to the x̂ axis and is positioned a distance hp

above the vertex of the trough.

The reason we choose to detune this beam from resonance can be ex-

plained by examining the data in Fig. 4.21. This plot shows the fluorescence

signal from atoms transfered via single-photon atomic cooling as a function of

the depopulation beam detuning from resonance with the 52S1/2(F = 2) →

52P3/2(F
′ = 1) transition frequency for a variety of intensities. The intensi-

ties used in this plot span nearly four orders of magnitude and were varied

by placing neutral density filters in the beam path. As seen in the graph,

for a given detuning an optimal intensity can be found. We believe this can

be explained as follows. Below the optimal intensity, the depopulation beam

does not excite atoms with unit probability and thus the transfer rate suffers.
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Figure 4.21: Fluorescence signal from atoms transfered via single-photon
atomic cooling as a function of the depopulation beam detuning from reso-
nance with the 52S1/2(F = 2) → 52P3/2(F

′ = 1) transition frequency for a
variety of intensities. The intensity of the depopulation beam was attenuated
with neutral density filters over nearly 4 orders of magnitude.

To understand why too high an intensity hurts the transfer efficiency we note

that the depopulation beam scatters off of the chamber walls, bathing the

magnetically trapped atoms in (near) resonant light. Of course, light of this

frequency causes state transitions which cause atoms to be lost from the mag-

netic trap. This effect is beneficial to the single-photon cooling process when

it occurs at the location of the depopulation beam focus. However, when the

transitions occur away from the depopulation beam focus, due to scattered

and reflected light, the result is magnetic trap loss. This removes atoms that
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could potentially have undergone the single-photon cooling process thereby

reducing the transfer efficiency. Therefore, the intensity and detuning must be

set strategically to maximize the efficiency of the transfer process. One may

wonder why higher transfer efficiencies occur at larger frequency detunings.

We believe that this can be understood by comparing the scattering rate in

the depopulation beam to the rate in the magnetic trap due to scattered light.

The rate at which atoms scatter near resonant light is found from Eq. 2.73 by

multiplying ρ22 by the excited state decay rate. The result is

Srate =
s0Γ/2

1 + s0 + 4(∆/Γ)2
, (4.1)

where s0 ≡ I/Isat is the saturation parameter, Γ is the excited state decay rate,

and ∆ is the detuning from the resonance transition frequency. This equation

shows that the scattering rate is not a linear function of beam intensity, rather

the scattering rate begins to saturate when atoms spend a significant fraction of

their time in the excited state. With this formula in mind, we are in a position

to compare the scattering rate at the depopulation beam focus (high saturation

parameter) with the rate in the magnetic trap (low saturation parameter) as a

function of depopulation beam detuning from resonance. We begin by writing

the scattering rate in the depopulation beam as

Sdepop =
s0Γ/2

1 + s0 + 4(∆/Γ)2
. (4.2)

While the amount of light scattered into the magnetic trap is unknown, it must

be proportional to the intensity of the depopulation beam. Since s0 ≡ I/Isat
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we may write

Smag =
αs0Γ/2

1 + αs0 + 4(∆/Γ)2
. (4.3)

as an approximation to the scattering rate in the magnetic trap, where α

represents the fraction of light scattered from the depopulation beam into

the magnetic trap. Figure 4.22 is a plot of the ratio of the scattering rate

at the depopulation beam focus to that in the magnetic trap. To make this

plot I assumed s0 = 3, a reasonable value. For lack of better terms I have
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Figure 4.22: Ratio of the scattering rate in the depopulation beam (good)
to the rate in the magnetic trap (bad) as a function of depopulation beam
frequency detuning. For a given saturation parameter in the depopulation
beam (here s0 = 3) this ratio increases with increasing detuning.

labeled those scattering events that occur near the depopulation beam focus

as “good,” while those which happen in the magnetic trap as “bad.” What

this plot shows is that for a given saturation parameter in the depopulation

beam, fewer atoms are scattered out of the magnetic trap at larger frequency
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detunings. The result of scattering events in the magnetic trap is, of course,

trap loss. Trap loss reduces the atoms available to undergo the single-photon

cooling process resulting in decreased transfer efficiency. By detuning the

depopulation beam, we minimize this detrimental effect.

Before discussing the cooling process itself, I would like to show one

more calculation for completeness. Figure 4.23 shows the combined potential

due to the magnetic trap, optical trough, and gravity for atoms in the initial
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Figure 4.23: The combined potential due to the magnetic trap, optical trough,
and gravity for atoms in the initial |F = 2,mF = 2〉 and final |F = 1,mF = 0〉
states along the vertical direction (ẑ). The dashed line indicates the preferred
location of the depopulation beam to minimize residual kinetic energy.

|F = 2,mF = 2〉 and final |F = 1,mF = 0〉 states along the vertical direction

(ẑ). The dashed line indicates the preferred location of the depopulation beam
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to minimize residual kinetic energy. Notice that in contrast to the potential

produced by the optical box (Fig. 4.11), atoms do not have to climb a potential

hill to reach the depopulation beam, resulting in a final population with less

residual kinetic energy.

In this iteration of the experiment, the cooling process was initiated by

adiabatically lowering the magnetic trapping potential. This is done by linearly

ramping down the current in the quadrupole coils in a time tramp, which is

on the order of 1 s. As the magnetic field gradient is reduced, the atomic

cloud expands and the turning point of each atom (in the vertical direction)

approaches the depopulation beam which is held a fixed distance below the

magnetic trap. To ensure that each atoms encounters the depopulation beam

near its classical turning point, the adiabaticity condition 〈τB〉/tramp ≪ 1 must

be satisfied, where 〈τB〉 is the average oscillation period in the magnetic trap.

We found this scheme to be advantageous over simply moving the centers of

the traps together, as in the previous two sections, because it reduced optical

trap loss due to atomic collisions with magnetically trapped atoms.

As discussed above, when the atoms encounter the depopulation beam

they are driven from the initial |F = 2,mF = 2〉 state into the 52S1/2(F = 1)

manifold. Once decoupled from the magnetic trap they fall into the optical

trough where they are captured.

Once the cooling process is complete, atoms transfered into the op-

tical trough via single-photon atomic cooling are imaged using the vertical

probe beam (see Sec. 3.4.1). To remove any residual atoms, all magnetic fields
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are switched off causing non-optically trapped atoms to free fall under the

influence of gravity, as in the last section. Then a beam resonant with the

52S1/2(F = 2) → 52P3/2(F = 3) transition is used to blow away atoms not in

the 52S1/2(F = 1) manifold. The remaining atoms have undergone the single-

photon cooling process. Then, the optical dipole beams are turned off and

a probe beam propagating along the ẑ-axis illuminates the atoms for 200µs.

This beam is subsequently imaged onto a CCD camera and compared to a

reference image taken with no atoms present. The result is integrated to yield

the total number of atoms present in the sample (see Sec. 2.8.1). Temper-

ature measurements obtained through the time-of-flight method are possible

by varying the delay between the release of the cloud and illumination by the

probe beam. Figure 4.24 shows an absorption image of approximately 1.5×105

atoms trapped in the optical trough. In this image false color is used to repre-

sent atomic density, magenta being the most dense. The rapid density fall-off

along the x̂ direction is due to the end caps. The density gradient along the ŷ

direction is due to the geometry of the trough.

To properly judge the performance of the single-photon cooling process,

several effects introduced by the geometry of the optical trough should be

considered. For example, the height of the pump beam above the trough vertex

hp must be strategically set to optimize cooling. Figure 4.25 shows the effect of

hp on both the number of atoms transfered into the optical trough via single-

photon cooling NO and the vertical temperature of the optically trapped atoms

T
(z)
O . The temperature data was taken before atoms in the trough had time to
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Figure 4.24: Absorption image of approximately 1.5 × 105 atoms trapped in
the optical trough. In this image false color is used to represent atomic density,
magenta being the most dense.

come to thermal equilibrium and therefore does not represent temperature in

the thermodynamics sense, rather T
(z)
O reflects the velocity distribution in the

vertical direction (see Sec. 1.6 for a discussion of this use of “temperature”).

T
(z)
O increases monotonically with hp, reflecting the energy gained by atoms

during free fall from the depopulation beam to the trough vertex. Atoms which

decay into the anti-trapped |F = 1,mF = 1〉 state gain additional energy from

the magnetic field gradient. For values of hp > 100 µm, this increase in energy

is sufficient to cause trap loss; atoms have enough energy to push through the

bottom of the optical trough. To minimize the temperature of the transfered

sample one should therefore minimize hp so that atoms are depopulated near

the trough vertex. However, for small values of hp the optical dipole beams
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Figure 4.25: Number (■) and temperature (●) of cooled atoms as a function
of hp (height of the depopulation beam above the trough vertex). The positive

slope of T
(z)
O reflects energy gained by atoms in free fall. For hp > 100 µm,

the additional energy increases the loss rate from the optical trough. For
hp < 100 µm spatial overlap of the pump beam and optical trough beams
reduces the excitation probability and hence the capture rate. The highest
phase-space density is achieved at hp = 41 µm.

overlap the depopulation beam. This partial occlusion of the depopulation

beam decreases the chance an atom will undergo the depopulating transition,

resulting in a decreased transfer rate.

As discussed in Sec. 1.4 the recoil temperature Tr = 362 nK is the

fundamental limit to the single-photon cooling process. However, as indicated

in Fig. 4.25, the final temperatures achieved during the single-photon cooling

process are well above this limit even for the small values of hp. If we where

cooling a 1-D ensemble then this residual energy could only be attributed
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to capturing atoms away from their classical turning points (see Eq. 1.3 and

related discussion). But this is not the case here because we are well into the

adiabatic regime: 〈τB〉/tramp ≈ 5× 10−3 ≪ 1. Indeed, we estimate the energy

due to capturing atoms away from there classical turning points to be only

≈ 0.5 µK. This excess energy can be explained by noting that this process only

cools the magnetically trapped atoms along the vertical dimension. Atoms

transfered into the optical trap retain their horizontal velocity, and due to the

geometry of the optical trough, energy in the y dimension is quickly mixed

with the z dimension, accounting for the non-vanishing T
(z)
O .

The measure of the effectiveness of the single-photon cooling process

is the amount of phase space compression it produces. For a given initial

phase-space density, the compression is maximized when the final phase-space

density is maximized. Here we define the phase-space density of our atomic

ensembles in the usual manner [23]

ρ = nλ3
d = n

[

h

(2πMkBT )1/2

]3

∝ nT−3/2, (4.4)

where n is the atom number density and λd is the thermal de Broglie wave-

length. The point on Fig. 4.25 corresponding to the highest phase-space den-

sity is located at hp = 41 µm.

We now come to the issue of addressing transfer efficiency from the

magnetic trap into the optical trough. To do this we compare the transfer

efficiency of the single-photon cooling process to the maximum transfer effi-

ciency expected in an adiabatic process transferring atoms between the two
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traps. If we model the ensembles in both the optical and magnetic trap with

Maxwell-Boltzmann velocity distributions and Gaussian spatial distributions

we can arrive at a simple analytical formula predicting the transfer efficiency

between the two traps via an adiabatic process. Strictly speaking, the mag-

netic and optical potentials are not harmonic, and therefore the assumption

of a Gaussian spatial distribution is clearly an approximation for our exper-

iment. However, we maintain this approximation because of the simplicity

and generality it affords our expression predicting the transfer efficiency. We

estimate that this assumption leads to an error of roughly 15%, which does

not affect the conclusions drawn from comparing the model with experiment.

Under an adiabatic transfer, the most atoms one could expect to transfer from

the large-volume, deep magnetic trap into the small-volume, shallow optical

trap is given by overlap of the the phase-space distribution of atoms in the

two traps. Under the assumptions given above, we may write this overlap as

η ≡ NO

NB

=
∏

i={x,y,z}

σ
(i)
O

σ
(i)
B

√

√

√

√

T
(i)
O

T
(i)
B

, (4.5)

where NO (NB), σO (σB), and TO (TB) are the number, 1/e radius and tem-

perature of the atoms in the optical (magnetic) trap, respectively. In this for-

mula the product runs over all three orthogonal dimensions to allow for trap

anisotropy. Furthermore, this form is only valid when (σ
(i)
O , T

(i)
O ) ≤ (σ

(i)
B , T

(i)
B )

is true.

Now we must consider the effect of single-photon atomic cooling on

the transfer process. In a non-interacting ensemble, the single-photon atomic
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cooling process compresses one dimension of the magnetic trap completely

both in position and momentum space (neglecting a photon recoil). This can

be expressed in Eq. 4.5 by setting the product over the vertical dimension (ẑ)

to 1. With this assumption we can write an upper bound on the expected

transfer efficiency of the single-photon cooling process as

ηspc =
∏

i={x,y}

σ
(i)
O

σ
(i)
B

√

√

√

√

T
(i)
O

T
(i)
B

∝ (σB

√

TB)−2, (4.6)

where TB = T
(i)
B reflects a thermalized magnetic trap, and σB ≡ σ

(x)
B = 2σ

(y)
B

reflects the anisotropic geometry of our magnetic quadrupole trap. We see

then, for a fixed optical trap geometry and depth that ηspc is determined by

the initial conditions in the magnetic trap. This expression can be simplified

even further by noting that for a thermalized ensemble the size of the cloud

in the magnetic trap is function of its temperature σB = σB(TB). Figure 4.26

shows a plot of the size of the magnetic cloud as a function of magnetic trap

temperature. We find that a linear fit of the measured radii in this regime

yields σB = (25.8 + 5.5TB µK−1) µm.

Figure 4.27 shows the experimentally measured transfer efficiencies

along with the predicted upper bound, given in Eq. 4.6, for several magnetic

trap temperatures. Data in this figure show fair agreement with Eq. 4.6 below

40µK, but there is a trend of increasing efficiency, with respect to the upper

bound, with increasing temperature. We believe that this can be understood

by noting that our derivation of ηspc is for a non-interacting ensemble. In this

case, the initial trajectories of atoms in the magnetic trap fully determine the
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Figure 4.26: Radius of the atomic cloud in the magnetic trap as a function
of temperature. We find that a linear fit of the measured radii in this regime
yields σB = (25.8 + 5.5TB µK−1) µm.

dynamics of the cooling process. Only a small fraction of those atoms, repre-

sented by Eq. 4.6, will become trapped in the optical trough. In reality, atoms

in the magnetic trap weakly interact through collisions. The average single

particle collision rate in the magnetic trap is given by

Γ = N−1

∫

n(~r)2σs〈vr〉 d~r, (4.7)

where N is the total number of trapped atoms, n(~r) is the atom number den-

sity, σs is the s-wave scattering cross section, and 〈vr〉 =
√

16kBT/πm is the

mean relative speed in a three-dimensional Boltzmann distribution. The inset

in Fig. 4.27 shows the calculated average single particle collision rate in the
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Figure 4.27: Experimentally measured transfer efficiencies (circles) as a func-
tion of magnetic trap temperature. The solid line represents the predicted
upper bound capture efficiency given by Eq. 4.6. Inset shows the calculated
average single particle collision rate in the magentic trap.

magnetic trap as a function of temperature. As shown in the figure, there

is a monotonically increasing trend. The effect of collisions is to rethermal-

ize the magnetic trap during the single-photon cooling process, repopulating

trappable trajectories as they are depleted by the depopulation beam. There-

fore, transfer efficiencies are expected to be enhanced for weakly interacting

ensembles, in agreement with the measured trend.

To gain further insight into the transfer process, we compared the rate

176



atoms were removed from the magnetic trap by the depopulation beam to the

rate they were loaded into the optical trough. Figure 4.28 shows the fraction

of atoms remaining in the magnetic trap as a function of the percent of the

current ramp down completed. As seen in the figure, atoms are removed

from the magnetic trap by the depopulation beam at a nearly constant rate
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Figure 4.28: Fraction of atoms remaining in the magnetic trap as a function of
the percentage of current ramp down completed. The total number of atoms
depopulated from the magnetic trap in this graph was approximately 3 × 107

atoms.

during the cooling process. In this figure, the total number of atoms removed

from the magnetic trap by the depopulation beam is roughly 3 × 107 atoms.

For comparison, Fig. 4.29 shows the number of atoms accumulated in the

optical trough as a function of the current in the quadrupole coils. Despite
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the constant rate at which atoms are depopulated from the magnetic trap, the
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Figure 4.29: Atom accumulation in the optical trough as a function of the
current in the quadrupole coils. Vertical lines indicate the point at which
the magnetic field gradient produced by the current is no longer sufficient to
levitate atoms against gravity for atoms in the mF = 1 and mF = 2 magnetic
substates.

loading rate into the optical trough is clearly non-linear. This graph indicates

that atoms are more efficiently loaded at the end of the cooling sequence, when

the magnetic field gradient is low. This trend may be explained as follows.

As the magnetic gradient is reduced, atoms in the magnetically anti-trapped

|F = 1,mF = 1〉 state gain less energy as they travel from the depopulation

beam to the optical trough vertex or walls. Therefore a smaller fraction of

these atoms will have sufficient energy to push through the bottom or sides of

the trough’s potential. Also, at lower magnetic field gradients the magnetically
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trappable |F = 1,mF = −1〉 state is not levitated out of the optical trough

and becomes trappable in the optical trough. Together, these effects result in

an increased transfer efficiency.

The maximum transfer efficiency we have measured is 2.2(3)%. How-

ever, it is clear from Eq. 4.6 that this number can be trivialy increased by in-

creasing the phase space overlap of the two traps. This could be accomplished

by reducing the size and temperature of the magnetic trap or increasing the

size and depth of the optical trough. It should also be noted that one can use

Eq. 4.6 to find an expression for the increase in the phase-space density of a

non-interacting ensemble undergoing this process:

ρO

ρB

=
σ

(z)
B

√

T
(z)
B

σ
(z)
O

√

T
(z)
O

. (4.8)

For a fixed optical trough geometry and depth, this ratio increases with TB in

spite of a corresponding decrease in transfer efficiency.

With initial magnetic trap parameters TB = 53 µK and σB = 515µm,

we have transfered 3.3 × 105 atoms at a temperature of 4.3 µK with 0.3%

transfer efficiency. This corresponds to a peak phase-space density of 4.9(3)×

10−4, which is roughly a 350-fold increase over the phase-space density of the

magnetic trap.

4.5 Future Directions

The power of the single-photon cooling technique will only be fully

demonstrated when it has been successfully applied to a species not amenable
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to other existing cooling techniques. The prospects of such a demonstration

are particularly promising in light of recent work with supersonic beams which

produced trapped samples of paramagnetic atoms [97, 98] and molecules [99–

102] at tens of millikelvins in a simple room-temperature apparatus. The

general nature of the single-photon cooling technique means that it can po-

tentially be adapted to cool and trap a large portion of these species, many of

which cannot be laser cooled with existing techniques. There has even been

a proposal to use this technique to cool molecules [103], which existing laser

cooling techniques have failed to cool due to their complicated energy level

structures.

The main focus in our lab however will be the application of single-

photon atomic cooling to hydrogenic isotopes. The methods described in this

dissertation, with appropriate modifications, are well suited to cooling and

trapping all three isotopes. In short, the proposed technique begins by seed-

ing a supersonic beam of neon with the hydrogenic isotope under study. After

entrainment, the hydrogenic beam will be brought to rest and trapped mag-

netically using an “atomic coilgun.” In fact, atomic hydrogen has already been

trapped in this manner [98]. Once trapped, the single-photon cooling process

will proceed in a manner similar to that discussed in this dissertation. The

species will initially be in the |F = 1,mF = 1〉 state. These atoms will be

depopulated near their classical turning points by driving them into the 2s

manifold via a two-photon transition at 243 nm. This long lived metastable

state will be quenched by application of a DC electric field mixing it with
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the short lived 2p state. Atoms which decay into the F = 0 manifold will be

trapped in an optical dipole trap formed from a standing wave of light inside a

build-up cavity. This process is outlined in Fig. 4.30, which shows the relevant

energy levels in hydrogen.
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Figure 4.30: Energy structure of Hydrogen relavant to single-photon atomic
cooling. Atoms magnetically trapped in the |F = 1,mF = 1〉 state will be
depopulated near their classical turning points by driving them into the 2s
manifold via a two photon transition at 243 nm. This long lived metastable
state will be quenched by application of a DC electric field mixing it with
the short lived 2p state. Atoms which decay into the F = 0 manifold will be
trapped in an optical dipole trap formed by a standing wave of light inside a
build-up cavity.

The first goal after trapping and cooling hydrogen and its isotopes will

be to push the limits of ultrahigh precision spectroscopy, especially needed for
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tritium. Additionally, cooled and trapped tritium may serve as an ideal system

for determining the neutrino rest mass, as shown in a recent concept paper

[104]. Perhaps most exciting to me is the proposed use of single-photon atomic

cooling on anti-hydrogen [105, 106] once it has been magnetically trapped [107].
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