Magnetic switching and magnetodynamics driven by spin transfer torque


Magnetic switching and magnetodynamics driven by spin transfer torque

Show simple record

dc.contributor.advisor Tsoi, Maxim
dc.creator Seinige, Heidi 2012-02-20T18:33:30Z 2012-02-20T18:33:30Z 2011-12 2012-02-20 December 2011
dc.description.abstract In the scope of this thesis spin transfer torque (STT) driven switching and resonances in point contact experiments are investigated. In the first part, the focus is on STT driven switching events in magnetic devices with different tilt of the magnetization with respect to the thin film sample plane. Varying tilt is reached by different magnetic multilayers as Co/Ni and Co/Pt and the e efficiency of STT is compared by measuring the magneto resistance (MR) traces. As expected it was observed that tilting the magnetization of one layer with respect to the other, can improve STT efficiency. This was confirmed by micromagentic simulations using OOMMF. In the second part of this thesis, STT driven resonances in an exchange-biased spin valve (EBSV) were investigated by applying ac (microwave) and dc currents while sweeping the applied magnetic field. The resulting magnetodynamics were observed by measuring the rectified voltage which appears across the sample. To characterize the sample first the well known and understood ferromagnetic resonance (FMR) was excited. After that the power of the applied ac current was increased and a second resonance at a smaller magnetic field could be observed. This resonance structure was investigated and shown to be due to parametric resonance. This non-linear excitation appears in oscillator systems, if one or both parameter (damping, eigen frequency) oscillate in time. In the STT driven resonance experiments, the accurrent causes the damping to oscillate and therefore drives the system into parametric resonance.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.subject Spin transfer torque
dc.subject Magnetic switching
dc.subject Magnetodynamics
dc.title Magnetic switching and magnetodynamics driven by spin transfer torque 2012-02-20T18:33:42Z
dc.identifier.slug 2152/ETD-UT-2011-12-4820
dc.contributor.committeeMember de Lozanne, Alex
dc.description.department Physics
dc.type.genre thesis
dc.type.material text Physics Physics University of Texas at Austin Masters Master of Arts

Files in this work

Download File: SEINIGE-THESIS.pdf
Size: 1.994Mb
Format: application/pdf

This work appears in the following Collection(s)

Show simple record

Advanced Search


My Account