Development of a coupled wellbore-reservoir compositional simulator for horizontal wells

Repository

Development of a coupled wellbore-reservoir compositional simulator for horizontal wells

Show full record

Title: Development of a coupled wellbore-reservoir compositional simulator for horizontal wells
Author: Shirdel, Mahdy
Abstract: Two-phase flow occurs during the production of oil and gas in the wellbores. Modeling this phenomenon is important for monitoring well productivity and designing surface facilities. Since the transient time period in the wellbore is usually shorter than reservoir time steps, stabilized flow is assumed in the wellbore. As such, semi-steady state models are used for modeling wellbore flow dynamics. However, in the case that flow variations happen in a short period of time (i.e., a gas kick during drilling) the use of a transient two-phase model is crucial. Over the last few years, a number of numerical and analytical wellbore simulators have been developed to mimic wellbore-reservoir interaction. However, some issues still remain a concern in these studies. The main issues surrounding a comprehensive wellbore model consist of fluid property calculations, such as black-oil or compositional models, governing equations, such as mechanistic or correlation-based models, effect of temperature variation and non-isothermal assumption, and methods for coupling the wellbore to the reservoir. In most cases, only standalone wellbore models for blackoil have been used to simulate reservoir and wellbore dynamic interactions. Those models are based on simplified assumptions that lead to an unrealistic estimation of pressure and temperature distributions inside the well. In addition, most reservoir simulators use rough estimates for the perforation pressure as a coupling condition between the wellbore and the reservoir, neglecting pressure drops in the horizontal section. In this study, we present an implementation of a compositional, pseudo steady-state, non-isothermal, coupled wellbore-reservoir simulator for fluid flow in wellbores with a vertical section and a horizontal section embedded on the producing reservoir. In addition, we present the implementation of a pseudo-compositional, fully implicit, transient two-fluid model for two-phase flow in wellbores. In this model, we solve gas/liquid mass balance, gas/liquid momentum balance, and two-phase energy equations in order to obtain the five primary variables: liquid velocity, gas velocity, pressure, holdup and temperature. In our simulation, we compared stratified, bubbly, intermittent flow effects on pressure and temperature distributions in either a transient or steady-state condition. We found that flow geometry variation in different regimes can significantly affect the flow parameters. We also observed that there are significant differences in flow rate prediction between a coupled wellbore-reservoir simulator and a stand-alone reservoir simulator, at the early stages of production. The outcome of this research leads to a more accurate and reliable simulation of multiphase flow in the wellbore, which can be applied to surface facility design, well performance optimization, and wellbore damage estimation.
Department: Petroleum and Geosystems Engineering
Subject: Horizontal well Compositional Two-phase flow Coupled Steady-state Transient
URI: http://hdl.handle.net/2152/ETD-UT-2010-12-2566
Date: 2010-12

Files in this work

Download File: SHIRDEL-THESIS.pdf
Size: 1.977Mb
Format: application/pdf

This work appears in the following Collection(s)

Show full record


Advanced Search

Browse

My Account

Statistics

Information