Dendrimer-encapsulated nanoparticles : synthetic methods and characterization including extended X-ray absorption-fine structure

Repository

Dendrimer-encapsulated nanoparticles : synthetic methods and characterization including extended X-ray absorption-fine structure

Show full record

Title: Dendrimer-encapsulated nanoparticles : synthetic methods and characterization including extended X-ray absorption-fine structure
Author: Weir, Michael Glen
Abstract: This work describes the synthesis of dendrimer-encapsulated nanoparticles (DENs) and the expansion of the characterization ability for these materials. The dendrimer-template method for the synthesis of nanoparticles allows precise control over the size, composition and structure of nanoparticles in the 40-250 atom range. In this size regime, the surface structure of the nanoparticles dominates their catalytic properties. The long term goal of this research is to correlate the structure of these nanoparticles to their catalytic activity, improving the ability to predict superior catalysts a priori. As a prerequisite for this analysis, the precise structure of the catalytically active nanoparticle must be determined. Characterization of nanoparticles in the 1-2 nm region is significantly more difficult than more commonly used nanoparticles of 3-5 nm diameter or larger. Typical characterization of these nanoparticles involves UV-vis spectroscopy for Mie absorbance and transmission electron microscopy for size analysis. This work involves the use of extended X-ray absorption-fine structure (EXAFS) to determine the local structure of the nanoparticles. For monometallic Pt DENs, EXAFS was combined with UV-vis, TEM, X-ray photoelectron spectroscopy (XPS) and electrochemistry to determine that the Pt system is not simply nanoparticles but a more complex, bimodal state. EXAFS has also been used to differentiate between different bimetallic structures. For PdAu DENs, there are two synthetic methods used. When both metals are reduced simultaneously, the resulting nanoparticles have a quasi-random alloy structure. These nanoparticles were then extracted from the dendrimer into an organic solvent by use of alkanethiols. The extraction process changed the alloy structure into Au-core/Pd-shell. When Pd and Au were reduced in sequence, the DENs were formed as a Au-core/Pd-shell material, regardless of the order of the reduction of the metals. The Au-core/Pd-shell structure was also present after extraction. In addition to structural analysis to determine the result of different synthetic methods, EXAFS was also used in situ to measure the structure of Pt DENs during the oxidation of absorbed CO. These in situ measurements are important for determining the structure of the actual catalyst rather than the precursor nanoparticle. In this case, the Pt DENs changed from a bimodal distribution into fully reduced nanoparticles by the application of a reducing potential. The binding of CO to the Pt DENs and subsequent oxidation did not cause measurable agglomeration of the nanoparticles. This reduction of the Pt system by electrochemical means was also explored as a synthetic method. The Pt-dendrimer complex was placed on a TEM grid for electrochemical treatment. A potential step was shown to reduce some of the Pt-dendrimer complexes into Pt nanoparticles of the expected size. However, most of the complexes were not reduced. Therefore, only the standard chemical reduction followed by electrochemical treatment is sufficient to fully reduce the nanoparticle samples. This work has explored additional synthetic methods for the synthesis of monometallic and bimetallic DENs. The use of EXAFS, as well as other advanced characterization techniques, has advanced knowledge of the structure of various DENs. Both the characterization toolset and the synthetic methods will provide a basis for investigations of catalytically active materials.
Department: Chemistry and Biochemistry
Subject: Dendrimer Nanoparticles EXAFS DENs X-ray photoelectron spectroscopy X-ray absorption-fine structure
URI: http://hdl.handle.net/2152/ETD-UT-2010-12-2163
Date: 2010-12

Files in this work

Download File: WEIR-DISSERTATION.pdf
Size: 6.035Mb
Format: application/pdf

This work appears in the following Collection(s)

Show full record


Advanced Search

Browse

My Account

Statistics

Information