Experimental measurement of energy transport in tokamak plasmas

Repository

Experimental measurement of energy transport in tokamak plasmas

Show full record

Title: Experimental measurement of energy transport in tokamak plasmas
Author: Meyerson, Dmitry
Abstract: A tokamak plasma near equilibrium can be perturbed with modulated power sources, such as modulated electron cyclotron heating, or repeated cold pulse application. Temperature response to cyclical changes in profiles parameters that are induced by modulated power deposition can be used to test theoretical transport models as well as improve experimental phenomenology used to optimize tokamak performance. The goal of this document to discuss some methods of analyzing electron temperature data in the context of energy transport. Specific experiments are considered in order to demonstrate the methods discussed, as well as to examine the electron energy transport properties of these shots. Electron cyclotron emission provides a convenient way to probe electron temperature for plasmas in thermal equilibrium. We can show that in tokamak devices,barring harmonic overlap, we can associate a particular frequency with a particular location in a tokamak, by carefully selecting the detection frequency and line of sight of the responsible antenna. ECE radiometers typically measure temperature at tens of locations at a time with a spatial resolution on the order of a few centimeters. Tracking the evolution of electron energy flux depends on careful analysis of the resulting data. The most straightforward way to analyze temperature perturbations is to simply consider various harmonics of the driving source and consider the corresponding harmonics in the temperature. We can analyze the phase and amplitude of the response to find the effective phase velocity of the perturbation which can in turn be related to parameters in the selected heat flux model. The most common example is to determine , the diffusion coefficient that appears in the linearized energy transport equation. The advantages and limitation of this method will be discussed in detail in Section 3. A more involved approach involves using the perturbed temperature data to compute modulated heat flux at any given point in the perturbation cycle, rather than using the temperature data directly. As before the heat flux can then be related to measured profile parameters and theoretical predictions. The advantages and limitations of this approach will be discussed in more detail. Both of the mentioned analysis methods are used to probe electron energy transport in a quiescent H mode (QH mode) shot conducted at DIIID. The nature of the internal transport barrier that is present in the shot is considered in light of the results.
Department: Physics
Subject: Plasma Fusion Transport ITB
URI: http://hdl.handle.net/2152/ETD-UT-2010-08-2181
Date: 2010-08

Files in this work

Download File: MEYERSON-THESIS.pdf
Size: 1.754Mb
Format: application/pdf

This work appears in the following Collection(s)

Show full record


Advanced Search

Browse

My Account

Statistics

Information