Mechanistic study of plasma damage to porous low-k : process development and dielectric recovery

Repository

Mechanistic study of plasma damage to porous low-k : process development and dielectric recovery

Show full record

Title: Mechanistic study of plasma damage to porous low-k : process development and dielectric recovery
Author: Shi, Hualiang
Abstract: Low-k dielectrics with porosity are being introduced to reduce the RC delay of Cu/low-k interconnect. However, during the O2 plasma ashing process, the porous low-k dielectrics tend to degrade due to methyl depletion, moisture uptake, and densification, increasing the dielectric constant and leakage current. This dissertation presents a study of the mechanisms of plasma damage and dielectric recovery. The kinetics of plasma interaction with low-k dielectrics was investigated both experimentally and theoretically. By using a gap structure, the roles of ion, photon, and radical in producing damage on low-k dielectrics were differentiated. Oxidative plasma induced damage was proportional to the oxygen radical density, enhanced by VUV photon, and increased with substrate temperature. Ion bombardment induced surface densification, blocking radical diffusion. Two analytical models were derived to quantify the plasma damage. Based on the radical diffusion, reaction, and recombination inside porous low-k dielectrics, a plasma altered layer model was derived to interpret the chemical effect in the low ion energy region. It predicted that oxidative plasma induced damage can be reduced by decreasing pore radius, substrate temperature, and oxygen radical density and increasing carbon concentration and surface recombination rate inside low-k dielectrics. The model validity was verified by experiments and Monte-Carlo simulations. This model was also extended to the patterned low-k structure. Based on the ion collision cascade process, a sputtering yield model was introduced to interpret the physical effect in the high ion energy region. The model validity was verified by checking the ion angular and energy dependences of sputtering yield using O2/He/Ar plasma, low-k dielectrics with different k values, and a Faraday cage. Low-k dielectrics and plasma process were optimized to reduce plasma damage, including increasing carbon concentration in low-k dielectrics, switching plasma generator from ICP to RIE, increasing hard mask thickness, replacing O2 by CO2 plasma, increasing CO addition in CO/O2 plasma, and increasing N2 addition in CO2/N2 plasma. By combining analytical techniques with the Kramers-Kronig dispersion relation and quantum chemistry calculation, the origin of dielectric loss was ascribed to the physisorbed water molecules. Post-ash CH4 plasma treatment, vapor silylation process, and UV radiation were developed to repair plasma damage.
Subject: Porous low-k dielectrics Plasma Diffusion Radical Photon Ion Thin film Semiconductor Characterization Etching Ashing UV Silylation
URI: http://hdl.handle.net/2152/ETD-UT-2010-05-749
Date: 2010-05

Files in this work

Download File: SHI-DISSERTATION.pdf
Size: 5.365Mb
Format: application/pdf

This work appears in the following Collection(s)

Show full record


Advanced Search

Browse

My Account

Statistics

Information