Dynamic software updates : a VM-centric approach


Dynamic software updates : a VM-centric approach

Show full record

Title: Dynamic software updates : a VM-centric approach
Author: Subramanian, Suriya
Abstract: Because software systems are imperfect, developers are forced to fix bugs and add new features. The common way of applying changes to a running system is to stop the application or machine and restart with the new version. Stopping and restarting causes a disruption in service that is at best inconvenient and at worst causes revenue loss and compromises safety. Dynamic software updating (DSU) addresses these problems by updating programs while they execute. Prior DSU systems for managed languages like Java and C# lack necessary functionality: they are inefficient and do not support updates that occur commonly in practice. This dissertation presents the design and implementation of Jvolve, a DSU system for Java. Jvolve's combination of flexibility, safety, and efficiency is a significant advance over prior approaches. Our key contribution is the extension and integration of existing Virtual Machine services with safe, flexible, and efficient dynamic updating functionality. Our approach is flexible enough to support a large class of updates, guarantees type-safety, and imposes no space or time overheads on steady-state execution. Jvolve supports many common updates. Users can add, delete, and change existing classes. Changes may add or remove fields and methods, replace existing ones, and change type signatures. Changes may occur at any level of the class hierarchy. To initialize new fields and update existing ones, Jvolve applies class and object transformer functions, the former for static fields and the latter for object instance fields. These features cover many updates seen in practice. Jvolve supports 20 of 22 updates to three open-source programs---Jetty web server, JavaEmailServer, and CrossFTP server---based on actual releases occurring over a one to two year period. This support is substantially more flexible than prior systems. Jvolve is safe. It relies on bytecode verification to statically type-check updated classes. To avoid dynamic type errors due to the timing of an update, Jvolve stops the executing threads at a DSU safe point and then applies the update. DSU safe points are a subset of VM safe points, where it is safe to perform garbage collection and thread scheduling. DSU safe points further restrict the methods that may be on each thread's stack, depending on the update. Restricted methods include updated methods for code consistency and safety, and user-specified methods for semantic safety. Jvolve installs return barriers and uses on-stack replacement to speed up reaching a safe point when necessary. While Jvolve does not guarantee that it will reach a DSU safe point, in our multithreaded benchmarks it almost always does. Jvolve includes a tool that automatically generates default object transformers which initialize new and changed fields to default values and retain values of unchanged fields in heap objects. If needed, programmers may customize the default transformers. Jvolve is the first dynamic updating system to extend the garbage collector to identify and transform all object instances of updated types. This dissertation introduces the concept of object-specific state transformers to repair application heap state for certain classes of bugs that corrupt part of the heap, and a novel methodology that employes dynamic analysis to automatically generate these transformers. Jvolve's eager object transformation design and implementation supports the widest class of updates to date. Finally, Jvolve is efficient. It imposes no overhead during steady-state execution. During an update, it imposes overheads to classloading and garbage collection. After an update, the adaptive compilation system will incrementally optimize the updated code in its usual fashion. Jvolve is the first full-featured dynamic updating system that imposes no steady-state overhead. In summary, Jvolve is the most-featured, most flexible, safest, and best-performing dynamic updating system for Java and marks a significant step towards practical support for dynamic updates in managed language virtual machines.
Department: Computer Sciences
Subject: Programming languages Object-oriented programming languages Virtual Machines Java Virtual Machines Java Dynamic software updating Jvolve Safe points Updating code
URI: http://hdl.handle.net/2152/ETD-UT-2010-05-1436
Date: 2010-05

Files in this work

Size: 1.281Mb
Format: application/pdf

This work appears in the following Collection(s)

Show full record

Advanced Search


My Account