Experimental contributions to the theory and application of molecular recognition

Repository

Experimental contributions to the theory and application of molecular recognition

Show full record

Title: Experimental contributions to the theory and application of molecular recognition
Author: Hughes, Andrew Dike, 1980-
Abstract: Molecular recognition is a major branch of modern organic chemistry, and it resides at the forefront of supramolecular chemistry. Supramolecular chemistry refers to the study of the noncovalent intermolecular interaction that are crucial for biological processes, catalytic systems, the organization of crystalline or solution phase superstructures, and molecular recognition to name a few examples. The following dissertation reports research efforts from the Anslyn group into three topics of fundamental interest to the molecular recognition community: cooperativity, array sensing, and the development of highly selective sensors for minimally functionalized analytes. Chapter 1 is a review of the most fundamental points of molecular recognition as it applies to the experimental work that follows. Intermolecular association phenomena are driven by multiple discrete, noncovalent interactions, and cooperativity is a measure of the efficiency with which these interactions are employed in a given system. Cooperativity is poorly understood despite its ubiquity in biological and molecular recognition contexts. The first synthetic hostguest system exhibiting positive cooperativity in water is reported in Chapter 2. The utility of sensitive but unselective sensors when applied in an array format has recently come to light. Chapter 3 details an array of polyaromatic fluorophores dissolved in an aqueous surfactant solution that was used to sense nitrated explosives. This exceptionally unselective quenching process was able to detect and discriminate nitrated explosives such as RDX and TNT at concentrations as low as 19 [mu]M. Finally, Chapters 4 and 5 report different approaches to the sensing of enantiomeric excess in [alpha]-chiral alcohols using an indicator displacement paradigm. Chapter 4 explores unprecedented efforts to convert the Sharpless catalytic epoxidation system to the first Ti[superscript IV]-based molecular recognition system. Chapter 5 focuses upon a two-stage approach of derivatization of the [alpha]-chiral alcohol to a metal chelating ligand followed by employment of the derivative in an indicator displacement assay.
Department: Chemistry Chemistry and Biochemistry
Subject: Molecular recognition Supramolecular chemistry Cooperative binding (Biochemistry) Detectors
URI: http://hdl.handle.net/2152/3903
Date: 2008-05

Files in this work

Download File: hughesa98165.pdf
Size: 6.666Mb
Format: application/pdf

This work appears in the following Collection(s)

Show full record


Advanced Search

Browse

My Account

Statistics

Information