Development of an opto-thermally responsive nanocomposite with potential applications as nanovalves for in vitro single-cell addressable delivery systems

Repository

Development of an opto-thermally responsive nanocomposite with potential applications as nanovalves for in vitro single-cell addressable delivery systems

Show full record

Title: Development of an opto-thermally responsive nanocomposite with potential applications as nanovalves for in vitro single-cell addressable delivery systems
Author: Morones, Jose Ruben, 1980-
Abstract: This work describes the synthesis pathways to the development of optically and thermally responsive nanovalves with fast response times in nanoporous membranes. As an approach, we developed synthesis pathways to couple a thermally responsive polymer with metallic nanoparticles and build a nanocomposite that synergizes the capability of metallic nanoparticles to convert light into heat, and the fast thermal response exhibited by the polymeric material. In addition, we developed a technique to immobilize the synthesized nanocomposite to the surface of nanoporous membranes, which allowed building valves with light and heat triggering responses. This dissertation describes two syntheses pathways developed to produce optically and thermally responsive nanocomposites by coupling metallic nanoparticles, gold and silver, with a thermally responsive polymer, p-N-isopropyl acrylamide (PNIPAM). The coupling is achieved by using PNIPAM as a capping and nucleating agent in the in situ redox reaction of a silver salt with sodium borohydride, and using PNIPAM as a capping and stabilizing agent in the redox reaction of a gold salt with ascorbic acid. The size and shape of the nanoparticles were controlled and the synthesized nanocomposites exhibit “cocoon-like” structures due to the PNIPAM surrounding the metal nanoparticles, giving the capability to aggregate and resolubilize, through many thermal (shown for gold and silver nanocomposites) and optical (shown by exposing to 532 nm wavelength low-power lasers) cycles. The steady state and dynamic heat conduction of the heat generated from the particles was modeled and the results agreed with the observed optical switching at our experimental conditions. Finally, a method to incorporate nanocomposites into nanoporous membranes (NPM) was developed. It involved prior immobilization of PNIPAM through plasma-induced grafting, followed by a reduction in situ of a metallic salt. The composite NPMs showed thermal responses and through simulation of heat conduction within the pores using the model developed in this work we were able to conclude that the synthesized composite membranes will exhibit optical switching when exposed to focused low power lasers. The nanovalves developed in this work have potential applications as optothermally responsive valves for the spatio-temporal delivery of bioactive agents, cell array, and advanced cell culture systems.
Department: Chemical Engineering
Subject: Organic conductors--Synthesis Organic conductors--Thermal properties Organic conductors--Optical properties Nanoparticles--Thermal properties Nanoparticles--Optical properties Membranes (Biology)--Thermal properties Membranes (Biology)--Optical properties
URI: http://hdl.handle.net/2152/17942
Date: 2008-08

Files in this work

Download File: moronesd78695.pdf
Size: 10.50Mb
Format: application/pdf

This work appears in the following Collection(s)

Show full record


Advanced Search

Browse

My Account

Statistics

Information